Biomolecular Interaction Centre and School of Biological Sciences, University of Canterbury, P.O. Box 4800, Christchurch 8140, New Zealand.
Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York 14623-5603, United States.
Biochemistry. 2020 Jun 23;59(24):2274-2288. doi: 10.1021/acs.biochem.0c00185. Epub 2020 Jun 8.
While humans lack the biosynthetic pathways for -diaminopimelate and l-lysine, they are essential for bacterial survival and are therefore attractive targets for antibiotics. It was recently discovered that members of the family utilize a rare aminotransferase route of the l-lysine biosynthetic pathway, thus offering a new enzymatic drug target. Here we characterize diaminopimelate aminotransferase from (DapL), a nonpathogenic model bacterium for Complementation experiments verify that the gene encodes a bona fide diaminopimelate aminotransferase, because the gene rescues an strain that is auxotrophic for -diaminopimelate. Kinetic studies show that DapL follows a Michaelis-Menten mechanism, with a of 4.0 mM toward its substrate l,l-diaminopimelate. The (0.46 s) and the / (115 s M) are somewhat lower than values for other diaminopimelate aminotransferases. Moreover, whereas other studied DapL orthologs are dimeric, sedimentation velocity experiments demonstrate that DapL exists in a monomer-dimer self-association, with a of 7.4 μM. The 2.25 Å resolution crystal structure presents the canonical dimer of chalice-shaped monomers, and small-angle X-ray scattering experiments confirm the dimer in solution. Sequence and structural alignments reveal that active site residues important for activity are conserved in DapL, despite the lower activity compared to those of other DapL homologues. Although the dimer interface buries 18% of the total surface area, several loops that contribute to the interface and active site, notably the L1, L2, and L5 loops, are highly mobile, perhaps explaining the unstable dimer and lower catalytic activity. Our kinetic, biophysical, and structural characterization can be used to inform the development of antibiotics.
虽然人类缺乏 -二氨基庚二酸和 l-赖氨酸的生物合成途径,但它们对细菌的生存至关重要,因此成为抗生素的有吸引力的靶标。最近发现,家族的成员利用 l-赖氨酸生物合成途径的一种罕见的氨基转移酶途径,从而提供了一个新的酶靶标。在这里,我们描述了来自 (DapL)的二氨基庚二酸氨基转移酶,这是一种非致病性模型细菌 互补实验验证了 基因编码一个真正的二氨基庚二酸氨基转移酶,因为该基因拯救了一个对 -二氨基庚二酸营养缺陷的 菌株。动力学研究表明,DapL 遵循米氏机制,其底物 l,l-二氨基庚二酸的 为 4.0 mM。 (0.46 s)和 / (115 s M)略低于其他二氨基庚二酸氨基转移酶的值。此外,虽然其他研究的 DapL 同源物是二聚体,但沉降速度实验表明 DapL 存在单体-二聚体自缔合, 为 7.4 μM。2.25 Å 分辨率的晶体结构呈现出典型的圣杯形单体二聚体,小角度 X 射线散射实验证实了溶液中的二聚体。序列和结构比对表明,尽管与其他 DapL 同系物相比活性较低,但对活性重要的活性位点残基在 DapL 中保守。尽管二聚体界面埋藏了总表面积的 18%,但几个有助于界面和活性位点的环,特别是 L1、L2 和 L5 环,非常灵活,这也许可以解释不稳定的二聚体和较低的催化活性。我们的动力学、生物物理和结构表征可以用于指导抗生素的开发。