Suppr超能文献

多源纵向网络和潜在变量模型分析儿童注意缺陷多动障碍症状。

Multisource Longitudinal Network and Latent Variable Model Analyses of ADHD Symptoms in Children.

机构信息

Department of Psychology, Washington State University.

Division of Behavioral Medicine and Clinical Psychology, Cincinnati Children's Hospital Medical Center.

出版信息

J Clin Child Adolesc Psychol. 2022 Mar-Apr;51(2):211-218. doi: 10.1080/15374416.2020.1756297. Epub 2020 Jun 1.

Abstract

: Multisource longitudinal network analysis was used to determine if between-child and within-child variance of attention-deficit/hyperactivity disorder (ADHD) symptoms provided unique findings of ADHD relative to latent variable model (LVM) analyses.: Mothers and fathers of 802 Spanish first-grade children (54% boys) provided ratings of ADHD symptoms at two time points six weeks apart (assessment 1: 723 mothers and 603 fathers; assessment 2: 667 mothers and 584 fathers). Network and latent variable models were applied to the ratings.: Inattention, hyperactivity, and mixed hyperactive/impulsive symptom communities occurred for the within- and between-children's symptom networks with the results being consistent across mothers and fathers, especially for the between-children's symptom networks. LVM analyses identified three factors with the same symptoms on each factor as in the symptom communities. These models also showed invariance across mothers and fathers as well as assessments.: Longitudinal networks provided several useful insights for ADHD, including centrality symptoms that differed across between- and within-child levels. However, many findings were also largely consistent with the LVM analyses. Future studies should use novel methods (e.g., intensive longitudinal measurement) and analytic tools to determine if more unique theoretical and clinical findings emerge when applying network analysis to longitudinally measured ADHD symptoms.

摘要

多源纵向网络分析用于确定 ADHD 症状的儿童间和儿童内方差是否为 ADHD 提供了独特的发现,与潜在变量模型 (LVM) 分析相比。802 名西班牙一年级儿童(54%为男孩)的母亲和父亲在相隔六周的两个时间点(评估 1:723 名母亲和 603 名父亲;评估 2:667 名母亲和 584 名父亲)对 ADHD 症状进行了评分。网络和潜在变量模型应用于这些评分。在儿童内和儿童间症状网络中都出现了注意力不集中、多动和混合多动/冲动症状群,结果在母亲和父亲之间是一致的,尤其是在儿童间症状网络中。LVM 分析确定了三个因素,每个因素都有与症状群相同的症状。这些模型还显示了在母亲和父亲以及评估之间的不变性。纵向网络为 ADHD 提供了一些有用的见解,包括中心性症状在儿童间和儿童内水平上有所不同。然而,许多发现也与 LVM 分析基本一致。未来的研究应该使用新的方法(例如,密集的纵向测量)和分析工具,以确定当将网络分析应用于纵向测量的 ADHD 症状时,是否会出现更多独特的理论和临床发现。

相似文献

1
Multisource Longitudinal Network and Latent Variable Model Analyses of ADHD Symptoms in Children.
J Clin Child Adolesc Psychol. 2022 Mar-Apr;51(2):211-218. doi: 10.1080/15374416.2020.1756297. Epub 2020 Jun 1.
3
Trait and State Variance in Multi-Informant Assessments of ADHD and Academic Impairment in Spanish First-Grade Children.
J Clin Child Adolesc Psychol. 2018 Sep-Oct;47(5):699-712. doi: 10.1080/15374416.2015.1118693. Epub 2016 Feb 18.
4
Longitudinal Correlates of Sluggish Cognitive Tempo and ADHD-Inattention Symptom Dimensions with Spanish Children.
J Clin Child Adolesc Psychol. 2016 Sep-Oct;45(5):632-641. doi: 10.1080/15374416.2015.1004680. Epub 2015 Mar 9.
5
Network Analysis of ADHD and ODD Symptoms: Novel Insights or Redundant Findings with the Latent Variable Model?
J Abnorm Child Psychol. 2019 Oct;47(10):1599-1610. doi: 10.1007/s10802-019-00549-y.
7
Equivalence of mother and father ratings of ADHD in children.
Child Neuropsychol. 2018 Feb;24(2):166-183. doi: 10.1080/09297049.2016.1236186. Epub 2016 Oct 11.
9
Mothers' and fathers' attributions and beliefs in families of girls and boys with attention-deficit/hyperactivity disorder.
Child Psychiatry Hum Dev. 2008 Mar;39(1):85-99. doi: 10.1007/s10578-007-0073-6. Epub 2007 Jul 6.

引用本文的文献

1
Symptom Network and Subgroup Analysis in Patients with Exacerbation of Chronic Obstructive Pulmonary Disease: A Cross-Sectional Study.
Int J Chron Obstruct Pulmon Dis. 2025 Jan 23;20:181-192. doi: 10.2147/COPD.S498792. eCollection 2025.
3
Psychopathology of cognitive disengagement syndrome (CDS): a network analysis based on CBCL scales in 72,106 Chinese school students.
Eur Child Adolesc Psychiatry. 2025 Mar;34(3):1081-1095. doi: 10.1007/s00787-024-02540-5. Epub 2024 Aug 3.

本文引用的文献

1
What do centrality measures measure in psychological networks?
J Abnorm Psychol. 2019 Nov;128(8):892-903. doi: 10.1037/abn0000446. Epub 2019 Jul 18.
2
Network Analysis of ADHD and ODD Symptoms: Novel Insights or Redundant Findings with the Latent Variable Model?
J Abnorm Child Psychol. 2019 Oct;47(10):1599-1610. doi: 10.1007/s10802-019-00549-y.
3
A network analysis approach to ADHD symptoms: More than the sum of its parts.
PLoS One. 2019 Jan 18;14(1):e0211053. doi: 10.1371/journal.pone.0211053. eCollection 2019.
4
Using Network Analysis to Identify Central Symptoms of Adolescent Depression.
J Clin Child Adolesc Psychol. 2019 Jul-Aug;48(4):656-668. doi: 10.1080/15374416.2018.1437735. Epub 2018 Mar 13.
5
Understanding the Emergence of Chronic Posttraumatic Stress Disorder Through Acute Stress Symptom Networks.
JAMA Psychiatry. 2017 Jun 1;74(6):649-650. doi: 10.1001/jamapsychiatry.2017.0788.
6
A network analysis of developmental change in ADHD symptom structure from preschool to adulthood.
Clin Psychol Sci. 2016 Nov;4(6):988-1001. doi: 10.1177/2167702615618664. Epub 2016 Mar 4.
7
Mental disorders as networks of problems: a review of recent insights.
Soc Psychiatry Psychiatr Epidemiol. 2017 Jan;52(1):1-10. doi: 10.1007/s00127-016-1319-z. Epub 2016 Dec 5.
8
A Monte Carlo Evaluation of Weighted Community Detection Algorithms.
Front Neuroinform. 2016 Nov 10;10:45. doi: 10.3389/fninf.2016.00045. eCollection 2016.
9
Identifying highly influential nodes in the complicated grief network.
J Abnorm Psychol. 2016 Aug;125(6):747-57. doi: 10.1037/abn0000181. Epub 2016 Jun 16.
10
Can network analysis transform psychopathology?
Behav Res Ther. 2016 Nov;86:95-104. doi: 10.1016/j.brat.2016.06.006. Epub 2016 Jul 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验