Burpo F John, Losch Anchor R, Nagelli Enoch A, Winter Stephen J, Bartolucci Stephen F, McClure Joshua P, Baker David R, Bui Jack K, Burns Alvin R, O'Brien Sean F, Forcherio Greg T, Aikin Brittany R, Healy Kelsey M, Remondelli Mason H, Mitropoulos Alexander N, Richardson Lance, Wickiser J Kenneth, Chu Deryn D
Department of Chemistry and Life Science, United States Military Academy; Photonics Research Center, United States Military Academy;
Department of Chemistry and Life Science, United States Military Academy.
J Vis Exp. 2020 May 18(159). doi: 10.3791/61395.
The synthesis of high surface area porous noble metal nanomaterials generally relies on time consuming coalescence of pre-formed nanoparticles, followed by rinsing and supercritical drying steps, often resulting in mechanically fragile materials. Here, a method to synthesize nanostructured porous platinum-based macrotubes and macrobeams with a square cross section from insoluble salt needle templates is presented. The combination of oppositely charged platinum, palladium, and copper square planar ions results in the rapid formation of insoluble salt needles. Depending on the stoichiometric ratio of metal ions present in the salt-template and the choice of chemical reducing agent, either macrotubes or macrobeams form with a porous nanostructure comprised of either fused nanoparticles or nanofibrils. Elemental composition of the macrotubes and macrobeams, determined with x-ray diffractometry and x-ray photoelectron spectroscopy, is controlled by the stoichiometric ratio of metal ions present in the salt-template. Macrotubes and macrobeams may be pressed into free standing films, and the electrochemically active surface area is determined with electrochemical impedance spectroscopy and cyclic voltammetry. This synthesis method demonstrates a simple, relatively fast approach to achieve high-surface area platinum-based macrotubes and macrobeams with tunable nanostructure and elemental composition that may be pressed into free-standing films with no required binding materials.
高比表面积多孔贵金属纳米材料的合成通常依赖于预先形成的纳米颗粒耗时的聚结过程,随后是冲洗和超临界干燥步骤,这往往会产生机械性能脆弱的材料。在此,我们提出了一种从难溶性盐针状模板合成具有方形横截面的纳米结构多孔铂基金属大管和大梁的方法。带相反电荷的铂、钯和铜方形平面离子的组合导致难溶性盐针的快速形成。根据盐模板中存在的金属离子的化学计量比以及化学还原剂的选择,会形成具有由融合纳米颗粒或纳米纤维组成的多孔纳米结构的大管或大梁。通过X射线衍射和X射线光电子能谱确定的大管和大梁的元素组成由盐模板中存在的金属离子的化学计量比控制。大管和大梁可以压制成独立的薄膜,其电化学活性表面积通过电化学阻抗谱和循环伏安法测定。这种合成方法展示了一种简单、相对快速的方法,可实现具有可调纳米结构和元素组成的高比表面积铂基金属大管和大梁,它们可以压制成无需粘结材料的独立薄膜。