Suppr超能文献

偏心感应电机电感矩阵解析计算的绕组张量方法

Winding Tensor Approach for the Analytical Computation of the Inductance Matrix in Eccentric Induction Machines.

作者信息

Martinez-Roman Javier, Puche-Panadero Ruben, Sapena-Bano Angel, Pineda-Sanchez Manuel, Perez-Cruz Juan, Riera-Guasp Martin

机构信息

Institute for Energy Engineering, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.

出版信息

Sensors (Basel). 2020 May 28;20(11):3058. doi: 10.3390/s20113058.

Abstract

Induction machines (IMs) are critical components of many industrial processes, what justifies the use of condition-based maintenance (CBM) systems for detecting their faults at an early stage, in order to avoid costly breakdowns of production lines. The development of CBM systems for IMs relies on the use of fast models that can accurately simulate the machine in faulty conditions. In particular, IM models must be able to reproduce the characteristic harmonics that the IM faults impress in the spatial waves of the air gap magneto-motive force (MMF), due to the complex interactions between spatial and time harmonics. A common type of fault is the eccentricity of the rotor core, which provokes an unbalanced magnetic pull, and can lead to destructive rotor-stator rub. Models developed using the finite element method (FEM) can achieve the required accuracy, but their high computational costs hinder their use in online CBM systems. Analytical models are much faster, but they need an inductance matrix that takes into account the asymmetries generated by the eccentricity fault. Building the inductance matrix for eccentric IMs using traditional techniques, such as the winding function approach (WFA), is a highly complex task, because these functions depend on the combined effect of the winding layout and of the air gap asymmetry. In this paper, a novel method for the fast and simple computation of the inductance matrix for eccentric IMs is presented, which decouples the influence of the air gap asymmetry and of the winding configuration using two independent tensors. It is based on the construction of a primitive inductance tensor, which formulates the eccentricity fault using single conductors as the simplest reference frame; and a winding tensor that converts it into the inductance matrix of a particular machine, taking into account the configuration of the windings. The proposed approach applies routine procedures from tensor algebra for performing such transformation in a simple way. It is theoretically explained and experimentally validated with a commercial induction motor with a mixed eccentricity fault.

摘要

感应电机(IMs)是许多工业过程中的关键部件,这使得使用基于状态的维护(CBM)系统在早期检测其故障成为合理之举,以便避免生产线出现代价高昂的故障。用于感应电机的CBM系统的开发依赖于能够在故障条件下准确模拟电机的快速模型。特别是,由于空间谐波和时间谐波之间的复杂相互作用,感应电机模型必须能够再现感应电机故障在气隙磁动势(MMF)的空间波中所产生的特征谐波。一种常见的故障类型是转子铁芯偏心,这会引发不平衡磁拉力,并可能导致破坏性的转子 - 定子摩擦。使用有限元方法(FEM)开发的模型可以达到所需的精度,但其高计算成本阻碍了它们在在线CBM系统中的应用。解析模型速度要快得多,但它们需要一个考虑偏心故障产生的不对称性的电感矩阵。使用传统技术(如绕组函数法(WFA))为偏心感应电机构建电感矩阵是一项非常复杂的任务,因为这些函数取决于绕组布局和气隙不对称性的综合影响。本文提出了一种用于快速简单计算偏心感应电机电感矩阵的新方法,该方法使用两个独立张量解耦气隙不对称性和绕组配置的影响。它基于一个原始电感张量的构建,该张量使用单根导体作为最简单的参考系来表述偏心故障;以及一个绕组张量,该张量考虑绕组配置将其转换为特定电机的电感矩阵。所提出的方法应用张量代数的常规程序以简单的方式执行这种转换。通过一台具有混合偏心故障的商用感应电机进行了理论解释和实验验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fddd/7378773/49e61085f9f5/sensors-20-03058-g001.jpg

相似文献

2
Analytical Model of Eccentric Induction Machines Using the Conformal Winding Tensor Approach.
Sensors (Basel). 2022 Apr 20;22(9):3150. doi: 10.3390/s22093150.
3
4
Partial Inductance Model of Induction Machines for Fault Diagnosis.
Sensors (Basel). 2018 Jul 18;18(7):2340. doi: 10.3390/s18072340.
8
Employing neutral-voltage spectrum for internal turn-to-turn fault detection in the induction machine drives.
ISA Trans. 2018 Oct;81:306-317. doi: 10.1016/j.isatra.2018.07.027. Epub 2018 Aug 4.
9
Incipient winding fault detection and diagnosis for squirrel-cage induction motors equipped on CRH trains.
ISA Trans. 2020 Apr;99:488-495. doi: 10.1016/j.isatra.2019.09.020. Epub 2019 Sep 30.
10
A Review of Techniques Used for Induction Machine Fault Modelling.
Sensors (Basel). 2021 Jul 16;21(14):4855. doi: 10.3390/s21144855.

引用本文的文献

1
Analytical Model of Eccentric Induction Machines Using the Conformal Winding Tensor Approach.
Sensors (Basel). 2022 Apr 20;22(9):3150. doi: 10.3390/s22093150.
2

本文引用的文献

4
A Hybrid Sensor Fault Diagnosis for Maintenance in Railway Traction Drives.
Sensors (Basel). 2020 Feb 11;20(4):962. doi: 10.3390/s20040962.
5
A Machine Condition Monitoring Framework Using Compressed Signal Processing.
Sensors (Basel). 2020 Jan 6;20(1):319. doi: 10.3390/s20010319.
6
Prediction of Motor Failure Time Using An Artificial Neural Network.
Sensors (Basel). 2019 Oct 8;19(19):4342. doi: 10.3390/s19194342.
8
Prognosis of a Wind Turbine Gearbox Bearing Using Supervised Machine Learning.
Sensors (Basel). 2019 Jul 12;19(14):3092. doi: 10.3390/s19143092.
9
Machine Learning for Long Cycle Maintenance Prediction of Wind Turbine.
Sensors (Basel). 2019 Apr 8;19(7):1671. doi: 10.3390/s19071671.
10
A Reliable Health Indicator for Fault Prognosis of Bearings.
Sensors (Basel). 2018 Nov 2;18(11):3740. doi: 10.3390/s18113740.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验