Teleki Alexandra, Nylander Olivia, Bergström Christel A S
Science for Life Laboratory, Department of Pharmacy, Uppsala University, Uppsala Biomedical Center P.O. Box 580, SE-75123 Uppsala, Sweden.
Department of Pharmacy, Uppsala University, Uppsala Biomedical Center P.O. Box 580, SE-75123 Uppsala, Sweden.
Pharmaceutics. 2020 May 28;12(6):493. doi: 10.3390/pharmaceutics12060493.
The intrinsic dissolution rate (IDR) of active pharmaceutical ingredients (API) is a key property that aids in early drug development, especially selecting formulation strategies to improve dissolution and thereby drug absorption in the intestine. Here, we developed a robust method for rapid, medium throughput screening of IDR and established the largest IDR dataset in open literature to date that can be used for pharmaceutical computational modeling. Eighteen compounds with diverse physicochemical properties were studied in both fasted and fed state simulated intestinal fluids. Dissolution profiles were measured in small-scale experimental assays using compound suspensions or discs. IDR measurements were not solely linked to API solubility in either dissolution media. Multivariate data analysis revealed that IDR strongly depends on compound partitioning into bile salt and phospholipid micelles in the simulated intestinal fluids, a process that in turn is governed by API lipophilicity, hydrophobicity, and ionization.
活性药物成分(API)的固有溶解速率(IDR)是一项关键特性,有助于早期药物研发,特别是在选择制剂策略以改善溶解并由此提高药物在肠道中的吸收方面。在此,我们开发了一种用于IDR快速、中等通量筛选的稳健方法,并建立了迄今为止公开文献中最大的IDR数据集,可用于药物计算建模。在禁食和进食状态的模拟肠液中研究了18种具有不同物理化学性质的化合物。使用化合物悬浮液或圆盘在小规模实验测定中测量溶解曲线。IDR测量并不完全与API在任何一种溶解介质中的溶解度相关。多变量数据分析表明,IDR强烈依赖于化合物在模拟肠液中分配到胆盐和磷脂微团中的过程,而这一过程又受API亲脂性、疏水性和电离作用的支配。