Suppr超能文献

基于概率的正常和异常嗓音声学分析最佳样本选择。

Probability-Based Best Sample Selection for Acoustic Analysis of Normal and Disordered Voices.

机构信息

University of Wisconsin-Madison School of Medicine and Public Health, Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, Madison, Wisconsin.

University of Wisconsin-Madison School of Medicine and Public Health, Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, Madison, Wisconsin.

出版信息

J Voice. 2022 Jan;36(1):21-26. doi: 10.1016/j.jvoice.2020.03.011. Epub 2020 May 29.

Abstract

PURPOSE

Acoustic analysis is a commonly used method for quantitatively measuring vocal fold function. The accuracy of acoustic analysis depends upon the operator selecting a stable segment of the voice sample to analyze. This paper proposes a novel method to more accurately and reliably select a stable voice segment.

STUDY DESIGN

Four selection methods were implemented to evaluate each raw audio signal and determine the most stable segment of each signal: The proposed modal periodogram method, the moving window method, the midvowel method, and the whole vowel method. Acoustic parameters of interest-namely perturbation (jitter), correlation dimension (D2), and spectrum convergence ratio (SCR)-were calculated for 48 phonation samples to evaluate each method.

METHODS

The proposed modal periodogram method utilizes a minimum mean-square error based approach to calculate a stable modal periodogram and obtain the most stable segment. The Wilcoxon Signed-Rank test was used to compare jitter, D2, and SCR values acquired using the modal periodogram method against the current standard segment selection methods.

RESULTS

The modal periodogram method yielded significantly lower D2 values, and a significantly higher SCR for both normal and disordered voice samples (P < 0.01). This indicates that the modal periodogram method is more apt for selecting a stable audio segment than the other selection methods.

摘要

目的

声学分析是一种常用于定量测量声带功能的方法。声学分析的准确性取决于操作人员选择稳定的语音样本段进行分析。本文提出了一种更准确、可靠地选择稳定语音段的新方法。

研究设计

为了评估每个原始音频信号并确定每个信号的最稳定段,实施了四种选择方法:所提出的模态周期图方法、移动窗口方法、中元音方法和全元音方法。为了评估每种方法,对 48 个发音样本计算了感兴趣的声学参数,即微扰(抖动)、关联维数(D2)和频谱收敛比(SCR)。

方法

所提出的模态周期图方法利用基于最小均方误差的方法来计算稳定的模态周期图,并获得最稳定的段。使用 Wilcoxon 符号秩检验比较使用模态周期图方法获得的抖动、D2 和 SCR 值与当前标准段选择方法的差异。

结果

模态周期图方法对正常和异常嗓音样本的 D2 值明显较低,而 SCR 值明显较高(P <0.01)。这表明模态周期图方法比其他选择方法更适合选择稳定的音频段。

相似文献

1
Probability-Based Best Sample Selection for Acoustic Analysis of Normal and Disordered Voices.
J Voice. 2022 Jan;36(1):21-26. doi: 10.1016/j.jvoice.2020.03.011. Epub 2020 May 29.
2
The Effect of Moving Window on Acoustic Analysis.
J Voice. 2016 Jan;30(1):5-10. doi: 10.1016/j.jvoice.2014.11.008. Epub 2015 May 18.
3
The effect of segment selection on acoustic analysis.
J Voice. 2012 Jan;26(1):1-7. doi: 10.1016/j.jvoice.2010.10.009. Epub 2011 Sep 1.
4
Acoustic analysis of aperiodic voice: perturbation and nonlinear dynamic properties in esophageal phonation.
J Voice. 2009 May;23(3):283-90. doi: 10.1016/j.jvoice.2007.10.004. Epub 2008 Apr 14.
5
Perturbation measurements in untrained male voices' transitions from modal to falsetto register.
J Voice. 2011 Nov;25(6):663-9. doi: 10.1016/j.jvoice.2010.01.013. Epub 2010 May 20.
6
Objective methods of sample selection in acoustic analysis of voice.
Ann Otol Rhinol Laryngol. 2011 Mar;120(3):155-61. doi: 10.1177/000348941112000303.
7
Perturbation and nonlinear dynamic analysis of adult male smokers.
J Voice. 2011 May;25(3):342-7. doi: 10.1016/j.jvoice.2010.01.006. Epub 2010 May 15.
8
Survey of Voice Acoustic Parameters in Iranian Female Teachers.
J Voice. 2016 Jul;30(4):507.e1-5. doi: 10.1016/j.jvoice.2015.05.020. Epub 2015 Aug 12.
9
Effects of low-pass filtering on acoustic analysis of voice.
J Voice. 2011 Jan;25(1):15-20. doi: 10.1016/j.jvoice.2009.08.004. Epub 2010 Mar 25.
10
Comparing the Nonlinear Dynamic Acoustic Parameters of Healthy Adult and Pediatric Voices.
Ann Otol Rhinol Laryngol. 2018 Dec;127(12):937-945. doi: 10.1177/0003489418803394. Epub 2018 Oct 7.

引用本文的文献

1
Utility of Smart Phones as a Voice Acquisition Device for Assessing Pre and Post Treatment Voice Using PRAAT.
Indian J Otolaryngol Head Neck Surg. 2023 Dec;75(4):2901-2906. doi: 10.1007/s12070-023-03884-1. Epub 2023 May 25.

本文引用的文献

1
The Effect of Moving Window on Acoustic Analysis.
J Voice. 2016 Jan;30(1):5-10. doi: 10.1016/j.jvoice.2014.11.008. Epub 2015 May 18.
2
Measurement of glottal cycle characteristics between children and adults: physiological variations.
J Voice. 2014 Jul;28(4):476-86. doi: 10.1016/j.jvoice.2013.12.010. Epub 2014 Mar 12.
3
The effect of segment selection on acoustic analysis.
J Voice. 2012 Jan;26(1):1-7. doi: 10.1016/j.jvoice.2010.10.009. Epub 2011 Sep 1.
4
Objective methods of sample selection in acoustic analysis of voice.
Ann Otol Rhinol Laryngol. 2011 Mar;120(3):155-61. doi: 10.1177/000348941112000303.
5
Updating signal typing in voice: addition of type 4 signals.
J Acoust Soc Am. 2010 Jun;127(6):3710-16. doi: 10.1121/1.3397477.
6
Effects of low-pass filtering on acoustic analysis of voice.
J Voice. 2011 Jan;25(1):15-20. doi: 10.1016/j.jvoice.2009.08.004. Epub 2010 Mar 25.
7
Objective acoustic analysis of pathological voices from patients with vocal nodules and polyps.
Folia Phoniatr Logop. 2009;61(6):342-9. doi: 10.1159/000252851. Epub 2009 Oct 28.
8
Comparison of different voice samples for perceptual analysis.
Folia Phoniatr Logop. 1999;51(3):108-16. doi: 10.1159/000021485.
9
Comparison of voice analysis systems for perturbation measurement.
J Speech Hear Res. 1996 Feb;39(1):126-34. doi: 10.1044/jshr.3901.126.
10
Fundamental frequency, intensity, and vowel selection: effects on measures of phonatory stability.
J Speech Hear Res. 1995 Dec;38(6):1189-98. doi: 10.1044/jshr.3806.1189.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验