Suppr超能文献

基于质谱的临床蛋白质组学的最新进展:在癌症研究中的应用

Recent advances in mass spectrometry based clinical proteomics: applications to cancer research.

作者信息

Macklin Andrew, Khan Shahbaz, Kislinger Thomas

机构信息

Princess Margaret Cancer Centre, University Health Network, Toronto, Canada.

Department of Medical Biophysics, University of Toronto, Toronto, Canada.

出版信息

Clin Proteomics. 2020 May 24;17:17. doi: 10.1186/s12014-020-09283-w. eCollection 2020.

Abstract

Cancer biomarkers have transformed current practices in the oncology clinic. Continued discovery and validation are crucial for improving early diagnosis, risk stratification, and monitoring patient response to treatment. Profiling of the tumour genome and transcriptome are now established tools for the discovery of novel biomarkers, but alterations in proteome expression are more likely to reflect changes in tumour pathophysiology. In the past, clinical diagnostics have strongly relied on antibody-based detection strategies, but these methods carry certain limitations. Mass spectrometry (MS) is a powerful method that enables increasingly comprehensive insights into changes of the proteome to advance personalized medicine. In this review, recent improvements in MS-based clinical proteomics are highlighted with a focus on oncology. We will provide a detailed overview of clinically relevant samples types, as well as, consideration for sample preparation methods, protein quantitation strategies, MS configurations, and data analysis pipelines currently available to researchers. Critical consideration of each step is necessary to address the pressing clinical questions that advance cancer patient diagnosis and prognosis. While the majority of studies focus on the discovery of clinically-relevant biomarkers, there is a growing demand for rigorous biomarker validation. These studies focus on high-throughput targeted MS assays and multi-centre studies with standardized protocols. Additionally, improvements in MS sensitivity are opening the door to new classes of tumour-specific proteoforms including post-translational modifications and variants originating from genomic aberrations. Overlaying proteomic data to complement genomic and transcriptomic datasets forges the growing field of proteogenomics, which shows great potential to improve our understanding of cancer biology. Overall, these advancements not only solidify MS-based clinical proteomics' integral position in cancer research, but also accelerate the shift towards becoming a regular component of routine analysis and clinical practice.

摘要

癌症生物标志物已经改变了肿瘤学临床的当前实践。持续的发现和验证对于改善早期诊断、风险分层以及监测患者对治疗的反应至关重要。肿瘤基因组和转录组分析现已成为发现新型生物标志物的既定工具,但蛋白质组表达的改变更有可能反映肿瘤病理生理学的变化。过去,临床诊断严重依赖基于抗体的检测策略,但这些方法存在一定局限性。质谱(MS)是一种强大的方法,能够越来越全面地洞察蛋白质组的变化,以推动个性化医疗。在本综述中,重点介绍了基于质谱的临床蛋白质组学的最新进展,特别是在肿瘤学方面。我们将详细概述临床相关的样本类型,以及研究人员目前可用的样本制备方法、蛋白质定量策略、质谱配置和数据分析流程。对每个步骤进行关键考量对于解决推进癌症患者诊断和预后的紧迫临床问题至关重要。虽然大多数研究集中在发现临床相关的生物标志物,但对严格的生物标志物验证的需求也在不断增长。这些研究侧重于高通量靶向质谱分析和具有标准化方案的多中心研究。此外,质谱灵敏度方面的改进为包括翻译后修饰和源自基因组畸变的变体在内的新型肿瘤特异性蛋白质形式打开了大门。将蛋白质组学数据与基因组和转录组数据集相结合形成了蛋白质基因组学这一不断发展的领域,它在增进我们对癌症生物学的理解方面显示出巨大潜力。总体而言,这些进展不仅巩固了基于质谱的临床蛋白质组学在癌症研究中的不可或缺的地位,还加速了其向成为常规分析和临床实践的常规组成部分的转变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9408/7247207/2e1aca04a3bf/12014_2020_9283_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验