Suppr超能文献

预测脊柱转移性肾细胞癌患者的肿瘤特异性生存率:哪种评分系统最准确?

Predicting tumor-specific survival in patients with spinal metastatic renal cell carcinoma: which scoring system is most accurate?

作者信息

Massaad Elie, Hadzipasic Muhamed, Alvarez-Breckenridge Christopher, Kiapour Ali, Fatima Nida, Schwab Joseph H, Saylor Philip, Oh Kevin, Schoenfeld Andrew J, Shankar Ganesh M, Shin John H

机构信息

Departments of1Neurosurgery.

2Orthopedic Surgery, and.

出版信息

J Neurosurg Spine. 2020 Jun 5;33(4):529-539. doi: 10.3171/2020.4.SPINE20173. Print 2020 Oct 1.

Abstract

OBJECTIVE

Although several prognostic scores for spinal metastatic disease have been developed in the past 2 decades, the applicability and validity of these models to specific cancer types are not yet clear. Most of the data used for model formation are from small population sets and have not been updated or externally validated to assess their performance. Developing predictive models is clinically relevant as prognostic assessment is crucial to optimal decision-making, particularly the decision for or against spine surgery. In this study, the authors investigated the performance of various spinal metastatic disease risk models in predicting prognosis for spine surgery to treat metastatic renal cell carcinoma (RCC).

METHODS

Data of patients who underwent surgery for RCC metastatic to the spine at 2 tertiary centers between 2010 and 2019 were retrospectively retrieved. The authors determined the prognostic value associated with the following scoring systems: the Tomita score, original and revised Tokuhashi scores, original and modified Bauer scores, Katagiri score, the Skeletal Oncology Research Group (SORG) classic algorithm and nomogram, and the New England Spinal Metastasis Score (NESMS). Regression analysis of patient variables in association with 1-year survival after surgery was assessed using Cox proportional hazard models. Calibration and time-dependent discrimination analysis were tested to quantify the accuracy of each scoring system at 3 months, 6 months, and 1 year.

RESULTS

A total of 86 metastatic RCC patients were included (median age 64 years [range 29-84 years]; 63 males [73.26%]). The 1-year survival rate was 72%. The 1-year survival group had a good performance status (Karnofsky Performance Scale [KPS] score 80%-100%) and an albumin level > 3.5 g/dL (p < 0.05). Multivariable-adjusted Cox regression analysis showed that poor performance status (KPS score < 70%), neurological deficit (Frankel grade A-D), and hypoalbuminemia (< 3.5 g/dL) were associated with a higher risk of death before 1 year (p < 0.05). The SORG nomogram, SORG classic, original Tokuhashi, and original Bauer demonstrated fair performance (0.7 < area under the curve < 0.8). The NESMS differentiates survival among the prognostic categories with the highest accuracy (area under the curve > 0.8).

CONCLUSIONS

The present study shows that the most cited and commonly used scoring systems have a fair performance predicting survival for patients undergoing spine surgery for metastatic RCC. The NESMS had the best performance at predicting 1-year survival after surgery.

摘要

目的

尽管在过去20年中已开发出多种针对脊柱转移性疾病的预后评分系统,但这些模型对特定癌症类型的适用性和有效性尚不清楚。用于模型构建的大多数数据来自小样本集,且未更新或进行外部验证以评估其性能。开发预测模型具有临床相关性,因为预后评估对于优化决策至关重要,尤其是对于是否进行脊柱手术的决策。在本研究中,作者调查了各种脊柱转移性疾病风险模型在预测转移性肾细胞癌(RCC)脊柱手术预后方面的性能。

方法

回顾性检索2010年至2019年间在2个三级中心接受脊柱转移RCC手术的患者数据。作者确定了与以下评分系统相关的预后价值:富田评分、原始和修订的德桥评分、原始和改良的鲍尔评分、片桐评分、骨肿瘤研究组(SORG)经典算法和列线图,以及新英格兰脊柱转移评分(NESMS)。使用Cox比例风险模型评估与术后1年生存率相关的患者变量的回归分析。进行校准和时间依赖性判别分析,以量化每个评分系统在3个月、6个月和1年时的准确性。

结果

共纳入86例转移性RCC患者(中位年龄64岁[范围29 - 84岁];63例男性[73.26%])。1年生存率为72%。1年生存组的患者表现状态良好(卡诺夫斯基表现量表[KPS]评分80% - 100%)且白蛋白水平> 3.5 g/dL(p < 0.05)。多变量调整后的Cox回归分析显示,表现状态差(KPS评分< 70%)、神经功能缺损(Frankel分级A - D)和低白蛋白血症(< 3.5 g/dL)与1年内较高的死亡风险相关(p < 0.05)。SORG列线图、SORG经典模型、原始德桥模型和原始鲍尔模型表现中等(曲线下面积0.7 < AUC < 0.8)。NESMS在区分预后类别中的生存率方面具有最高的准确性(曲线下面积> 0.8)。

结论

本研究表明,最常引用和常用的评分系统在预测转移性RCC脊柱手术患者的生存率方面表现中等。NESMS在预测术后1年生存率方面表现最佳。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验