Suppr超能文献

利用简单的近红外敏感 RGB 相机和机器学习方法对玉米植株进行精确的 NDVI 估算。

Precise Estimation of NDVI with a Simple NIR Sensitive RGB Camera and Machine Learning Methods for Corn Plants.

机构信息

Department of Agricultural and Biological Engineering, Purdue University, 225 S. University St., West Lafayette, IN 47907, USA.

出版信息

Sensors (Basel). 2020 Jun 5;20(11):3208. doi: 10.3390/s20113208.

Abstract

The normalized difference vegetation index (NDVI) is widely used in remote sensing to monitor plant growth and chlorophyll levels. Usually, a multispectral camera (MSC) or hyperspectral camera (HSC) is required to obtain the near-infrared (NIR) and red bands for calculating NDVI. However, these cameras are expensive, heavy, difficult to geo-reference, and require professional training in imaging and data processing. On the other hand, the RGBN camera (NIR sensitive RGB camera, simply modified from standard RGB cameras by removing the NIR rejection filter) have also been explored to measure NDVI, but the results did not exactly match the NDVI from the MSC or HSC solutions. This study demonstrates an improved NDVI estimation method with an RGBN camera-based imaging system (Ncam) and machine learning algorithms. The Ncam consisted of an RGBN camera, a filter, and a microcontroller with a total cost of only $70 ~ 85. This new NDVI estimation solution was compared with a high-end hyperspectral camera in an experiment with corn plants under different nitrogen and water treatments. The results showed that the Ncam with two-band-pass filter achieved high performance (R2 = 0.96, RMSE = 0.0079) at estimating NDVI with the machine learning model. Additional tests showed that besides NDVI, this low-cost Ncam was also capable of predicting corn plant nitrogen contents precisely. Thus, Ncam is a potential option for MSC and HSC in plant phenotyping projects.

摘要

归一化差异植被指数 (NDVI) 在遥感中被广泛用于监测植物生长和叶绿素水平。通常,需要使用多光谱相机 (MSC) 或高光谱相机 (HSC) 来获取近红外 (NIR) 和红色波段,以计算 NDVI。然而,这些相机价格昂贵、重量大、难以地理参考,并且需要在成像和数据处理方面进行专业培训。另一方面,也已经探索了使用 RGBN 相机(对标准 RGB 相机进行简单修改,通过去除近红外滤光片来获得 NIR 敏感的 RGB 相机)来测量 NDVI,但结果与 MSC 或 HSC 解决方案的 NDVI 并不完全匹配。本研究展示了一种使用 RGBN 相机成像系统 (Ncam) 和机器学习算法的改进 NDVI 估算方法。Ncam 由一个 RGBN 相机、一个滤光片和一个带有总成本仅为 70 美元至 85 美元的微控制器组成。该新的 NDVI 估算解决方案在使用不同氮和水处理的玉米植株的实验中与高端高光谱相机进行了比较。结果表明,带有两个带通滤光片的 Ncam 在使用机器学习模型估算 NDVI 时具有高性能(R2=0.96,RMSE=0.0079)。额外的测试表明,除了 NDVI 之外,这种低成本的 Ncam 还可以精确预测玉米植株的氮含量。因此,Ncam 是植物表型项目中 MSC 和 HSC 的潜在选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c528/7308988/9a37ff113b10/sensors-20-03208-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验