Department of Industrial and Systems Engineering, Korea Advanced Institute of Science and Technology (34968KAIST), Deajeon, Republic of Korea.
Stat Methods Med Res. 2020 Nov;29(11):3381-3395. doi: 10.1177/0962280220928384. Epub 2020 Jun 14.
Latent class models have been widely used in longitudinal studies to uncover unobserved heterogeneity in a population and find the characteristics of the latent classes simultaneously using the class allocation probabilities dependent on predictors. However, previous latent class models for longitudinal data suffer from uncertainty in the choice of the number of latent classes. In this study, we propose a Bayesian nonparametric latent class model for longitudinal data, which allows the number of latent classes to be inferred from the data. The proposed model is an infinite mixture model with predictor-dependent class allocation probabilities; an individual longitudinal trajectory is described by the class-specific linear mixed effects model. The model parameters are estimated using Markov chain Monte Carlo methods. The proposed model is validated using a simulated example and a real-data example for characterizing latent classes of estradiol trajectories over the menopausal transition using data from the Study of Women's Health Across the Nation.
潜类模型已广泛应用于纵向研究中,以揭示人群中未被观察到的异质性,并同时利用依赖于预测因子的类别分配概率来找到潜在类别特征。然而,之前用于纵向数据的潜类模型在潜类数量的选择上存在不确定性。在这项研究中,我们提出了一种用于纵向数据的贝叶斯非参数潜类模型,该模型允许从数据中推断出潜类的数量。所提出的模型是一个具有预测因子依赖类分配概率的无限混合模型;个体纵向轨迹由特定类别的线性混合效应模型来描述。模型参数使用马尔可夫链蒙特卡罗方法进行估计。通过模拟示例和实际数据示例验证了所提出的模型,这些示例用于使用来自全国妇女健康研究的数据描述绝经过渡期间雌二醇轨迹的潜在类别。