Li Zhi, Chen Yuanjun, Ji Shufang, Tang Yan, Chen Wenxing, Li Ang, Zhao Jie, Xiong Yu, Wu Yuen, Gong Yue, Yao Tao, Liu Wei, Zheng Lirong, Dong Juncai, Wang Yu, Zhuang Zhongbin, Xing Wei, He Chun-Ting, Peng Chao, Cheong Weng-Chon, Li Qiheng, Zhang Maolin, Chen Zheng, Fu Ninghua, Gao Xin, Zhu Wei, Wan Jiawei, Zhang Jian, Gu Lin, Wei Shiqiang, Hu Peijun, Luo Jun, Li Jun, Chen Chen, Peng Qing, Duan Xiangfeng, Huang Yu, Chen Xiao-Ming, Wang Dingsheng, Li Yadong
Department of Chemistry, Tsinghua University, Beijing, China.
Beijing Key Laboratory of Microstructure and Property of Advanced Materials, Beijing University of Technology, Beijing, China.
Nat Chem. 2020 Aug;12(8):764-772. doi: 10.1038/s41557-020-0473-9. Epub 2020 Jun 15.
Single-atom catalysts not only maximize metal atom efficiency, they also display properties that are considerably different to their more conventional nanoparticle equivalents, making them a promising family of materials to investigate. Herein we developed a general host-guest strategy to fabricate various metal single-atom catalysts on nitrogen-doped carbon (M/CN, M = Pt, Ir, Pd, Ru, Mo, Ga, Cu, Ni, Mn). The iridium variant Ir/CN electrocatalyses the formic acid oxidation reaction with a mass activity of 12.9 [Formula: see text] whereas an Ir/C nanoparticle catalyst is almost inert (~4.8 × 10 [Formula: see text]). The activity of Ir/CN is also 16 and 19 times greater than those of Pd/C and Pt/C, respectively. Furthermore, Ir/CN displays high tolerance to CO poisoning. First-principle density functional theory reveals that the properties of Ir/CN stem from the spatial isolation of iridium sites and from the modified electronic structure of iridium with respect to a conventional nanoparticle catalyst.
单原子催化剂不仅能使金属原子效率最大化,还展现出与传统纳米颗粒催化剂截然不同的性质,这使得它们成为一类值得研究的很有前景的材料。在此,我们开发了一种通用的主客体策略,用于在氮掺杂碳上制备各种金属单原子催化剂(M/CN,M = Pt、Ir、Pd、Ru、Mo、Ga、Cu、Ni、Mn)。铱变体Ir/CN对甲酸氧化反应具有电催化活性,质量活性为12.9 ,而Ir/C纳米颗粒催化剂几乎是惰性的(约4.8×10 )。Ir/CN的活性分别比Pd/C和Pt/C的活性高16倍和19倍。此外,Ir/CN对CO中毒表现出高耐受性。第一性原理密度泛函理论表明,Ir/CN的性质源于铱位点的空间隔离以及相对于传统纳米颗粒催化剂铱的电子结构的改变。