Suppr超能文献

多层变量选择策略在丁酰胆碱酯酶抑制剂 QSAR 建模中的应用。

A Multi-layered Variable Selection Strategy for QSAR Modeling of Butyrylcholinesterase Inhibitors.

机构信息

Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.

Department of Chemical Technology, University of Calcutta, 92 APC Road, Kolkata 700 032, India.

出版信息

Curr Top Med Chem. 2020;20(18):1601-1627. doi: 10.2174/1568026620666200616142753.

Abstract

BACKGROUND

Alzheimer's disease (AD), a neurological disorder, is the most common cause of senile dementia. Butyrylcholinesterase (BuChE) enzyme plays a vital role in regulating the brain acetylcholine (ACh) neurotransmitter, but in the case of Alzheimer's disease (AD), BuChE activity gradually increases in patients with a decrease in the acetylcholine (ACh) concentration via hydrolysis. ACh plays an essential role in regulating learning and memory as the cortex originates from the basal forebrain, and thus, is involved in memory consolidation in these sites.

METHODS

In this work, we have developed a partial least squares (PLS)-regression based two dimensional quantitative structure-activity relationship (2D-QSAR) model using 1130 diverse chemical classes of compounds with defined activity against the BuChE enzyme. Keeping in mind the strict Organization for Economic Co-operation and Development (OECD) guidelines, we have tried to select significant descriptors from the large initial pool of descriptors using multi-layered variable selection strategy using stepwise regression followed by genetic algorithm (GA) followed by again stepwise regression technique and at the end best subset selection prior to development of final model thus reducing noise in the input. Partial least squares (PLS) regression technique was employed for the development of the final model while model validation was performed using various stringent validation criteria.

RESULTS

The results obtained from the QSAR model suggested that the quality of the model is acceptable in terms of both internal (R2= 0.664, Q2= 0.650) and external (R2 Pred= 0.657) validation parameters. The QSAR studies were analyzed, and the structural features (hydrophobic, ring aromatic and hydrogen bond acceptor/donor) responsible for enhancement of the activity were identified. The developed model further suggests that the presence of hydrophobic features like long carbon chain would increase the BuChE inhibitory activity and presence of amino group and hydrazine fragment promoting the hydrogen bond interactions would be important for increasing the inhibitory activity against BuChE enzyme.

CONCLUSION

Furthermore, molecular docking studies have been carried out to understand the molecular interactions between the ligand and receptor, and the results are then correlated with the structural features obtained from the QSAR models. The information obtained from the QSAR models are well corroborated with the results of the docking study.

摘要

背景

阿尔茨海默病(AD)是一种神经退行性疾病,是最常见的老年痴呆症病因。丁酰胆碱酯酶(BuChE)酶在调节大脑乙酰胆碱(ACh)神经递质方面起着至关重要的作用,但在阿尔茨海默病(AD)的情况下,BuChE 活性通过水解逐渐增加,而乙酰胆碱(ACh)的浓度则降低。ACh 在调节学习和记忆方面起着至关重要的作用,因为大脑皮层起源于基底前脑,因此参与了这些部位的记忆巩固。

方法

在这项工作中,我们使用了 1130 种具有针对 BuChE 酶活性的不同化学类别的化合物,基于偏最小二乘法(PLS)回归建立了二维定量构效关系(2D-QSAR)模型。考虑到严格的经济合作与发展组织(OECD)准则,我们尝试使用多层变量选择策略,从初始大量描述符中选择重要描述符,该策略依次使用逐步回归、遗传算法(GA),然后再次使用逐步回归技术,最后在开发最终模型之前进行最佳子集选择,从而减少输入中的噪声。偏最小二乘法(PLS)回归技术用于开发最终模型,而模型验证则使用各种严格的验证标准进行。

结果

从 QSAR 模型中获得的结果表明,该模型在内部(R2=0.664,Q2=0.650)和外部(R2Pred=0.657)验证参数方面的质量都是可以接受的。对 QSAR 研究进行了分析,并确定了增强活性的结构特征(疏水性、环芳香性和氢键供体/受体)。开发的模型进一步表明,存在长碳链等疏水性特征会增加 BuChE 抑制活性,而存在氨基和肼片段会促进氢键相互作用,这对于提高对 BuChE 酶的抑制活性非常重要。

结论

此外,还进行了分子对接研究,以了解配体和受体之间的分子相互作用,然后将结果与 QSAR 模型中获得的结构特征相关联。从 QSAR 模型中获得的信息与对接研究的结果很好地吻合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验