Suppr超能文献

横亘在二叠纪三叠纪大灭绝与复苏期间的四足动物纬度多样性梯度

The latitudinal diversity gradient of tetrapods across the Permo-Triassic mass extinction and recovery interval.

机构信息

School of Earth and Environment, University of Leeds, Leeds, UK.

Department of Earth Sciences, University of Oxford, Oxford, UK.

出版信息

Proc Biol Sci. 2020 Jun 24;287(1929):20201125. doi: 10.1098/rspb.2020.1125. Epub 2020 Jun 17.

Abstract

The decline in species richness from the equator to the poles is referred to as the latitudinal diversity gradient (LDG). Higher equatorial diversity has been recognized for over 200 years, but the consistency of this pattern in deep time remains uncertain. Examination of spatial biodiversity patterns in the past across different global climate regimes and continental configurations can reveal how LDGs have varied over Earth history and potentially differentiate between suggested causal mechanisms. The Late Permian-Middle Triassic represents an ideal time interval for study, because it is characterized by large-scale volcanic episodes, extreme greenhouse temperatures and the most severe mass extinction event in Earth history. We examined terrestrial and marine tetrapod spatial biodiversity patterns using a database of global tetrapod occurrences. Terrestrial tetrapods exhibit a bimodal richness distribution throughout the Late Permian-Middle Triassic, with peaks in the northern low latitudes and southern mid-latitudes around 20-40° N and 60° S, respectively. Marine reptile fossils are known almost exclusively from the Northern Hemisphere in the Early and Middle Triassic, with highest diversity around 20° N. Reconstructed terrestrial LDGs contrast strongly with the generally unimodal gradients of today, potentially reflecting high global temperatures and prevailing Pangaean super-monsoonal climate system during the Permo-Triassic.

摘要

从赤道到极地的物种丰富度下降被称为纬度多样性梯度(LDG)。赤道地区的高生物多样性已经被人们认识了 200 多年,但这种模式在深层时间内的一致性仍然不确定。研究过去不同全球气候制度和大陆配置下的空间生物多样性模式,可以揭示 LDG 在地球历史上是如何变化的,并可能区分不同的因果机制。晚二叠世-中三叠世是一个理想的研究时间段,因为它具有大规模的火山活动、极端的温室温度和地球历史上最严重的大规模灭绝事件。我们使用全球四足动物发生数据库研究了陆地和海洋四足动物的空间生物多样性模式。陆地四足动物在整个晚二叠世-中三叠世表现出双峰丰富度分布,在北纬 20-40°和南纬 60°左右分别有高峰。早、中三叠世的海洋爬行动物化石几乎只在北半球发现,在北纬 20°左右的多样性最高。重建的陆地 LDG 与现今的单峰梯度形成鲜明对比,这可能反映了在古生代-三叠纪时期全球气温较高和盛行的泛大陆季风气候系统。

相似文献

1
The latitudinal diversity gradient of tetrapods across the Permo-Triassic mass extinction and recovery interval.
Proc Biol Sci. 2020 Jun 24;287(1929):20201125. doi: 10.1098/rspb.2020.1125. Epub 2020 Jun 17.
2
Olson's Extinction and the latitudinal biodiversity gradient of tetrapods in the Permian.
Proc Biol Sci. 2017 Apr 12;284(1852). doi: 10.1098/rspb.2017.0231.
3
The rise of the ruling reptiles and ecosystem recovery from the Permo-Triassic mass extinction.
Proc Biol Sci. 2018 Jun 13;285(1880). doi: 10.1098/rspb.2018.0361.
5
Tetrapod distribution and temperature rise during the Permian-Triassic mass extinction.
Proc Biol Sci. 2018 Jan 10;285(1870). doi: 10.1098/rspb.2017.2331.
6
Delayed recovery of non-marine tetrapods after the end-Permian mass extinction tracks global carbon cycle.
Proc Biol Sci. 2012 Apr 7;279(1732):1310-8. doi: 10.1098/rspb.2011.1895. Epub 2011 Oct 26.
7
Ancient tropical extinctions at high latitudes contributed to the latitudinal diversity gradient.
Evolution. 2020 Sep;74(9):1966-1987. doi: 10.1111/evo.13967. Epub 2020 Apr 18.
8
Early Triassic marine biotic recovery: the predators' perspective.
PLoS One. 2014 Mar 19;9(3):e88987. doi: 10.1371/journal.pone.0088987. eCollection 2014.
9
Flat latitudinal diversity gradient caused by the Permian-Triassic mass extinction.
Proc Natl Acad Sci U S A. 2020 Jul 28;117(30):17578-17583. doi: 10.1073/pnas.1918953117. Epub 2020 Jul 6.
10
Rapid turnover of top predators in African terrestrial faunas around the Permian-Triassic mass extinction.
Curr Biol. 2023 Jun 5;33(11):2283-2290.e3. doi: 10.1016/j.cub.2023.04.007. Epub 2023 May 22.

引用本文的文献

1
Early Triassic super-greenhouse climate driven by vegetation collapse.
Nat Commun. 2025 Jul 2;16(1):5400. doi: 10.1038/s41467-025-60396-y.
2
Geochemistry of the Late Permian Coal in Northeast Yunnan, China: Provenance and Paleoenvironmental Implications.
ACS Omega. 2025 Jun 9;10(24):25904-25920. doi: 10.1021/acsomega.5c02182. eCollection 2025 Jun 24.
3
A Phanerozoic gridded dataset for palaeogeographic reconstructions.
Sci Data. 2024 Jun 29;11(1):710. doi: 10.1038/s41597-024-03468-w.
4
Challenges and directions in analytical paleobiology.
Paleobiology. 2023 Aug;49(3):377-393. doi: 10.1017/pab.2023.3. Epub 2023 Feb 27.
5
Sampling biases obscure the early diversification of the largest living vertebrate group.
Proc Biol Sci. 2022 Oct 26;289(1985):20220916. doi: 10.1098/rspb.2022.0916. Epub 2022 Oct 19.
6
Living fast in the Triassic: New data on life history in Lystrosaurus (Therapsida: Dicynodontia) from northeastern Pangea.
PLoS One. 2021 Nov 5;16(11):e0259369. doi: 10.1371/journal.pone.0259369. eCollection 2021.
7
Spatial sampling heterogeneity limits the detectability of deep time latitudinal biodiversity gradients.
Proc Biol Sci. 2021 Feb 24;288(1945):20202762. doi: 10.1098/rspb.2020.2762.
8
A deep-time perspective on the latitudinal diversity gradient.
Proc Natl Acad Sci U S A. 2020 Jul 28;117(30):17479-17481. doi: 10.1073/pnas.2011997117. Epub 2020 Jul 15.

本文引用的文献

1
Ancient tropical extinctions at high latitudes contributed to the latitudinal diversity gradient.
Evolution. 2020 Sep;74(9):1966-1987. doi: 10.1111/evo.13967. Epub 2020 Apr 18.
2
Spatio-temporal climate change contributes to latitudinal diversity gradients.
Nat Ecol Evol. 2019 Oct;3(10):1419-1429. doi: 10.1038/s41559-019-0962-7. Epub 2019 Sep 9.
3
Climatic shifts drove major contractions in avian latitudinal distributions throughout the Cenozoic.
Proc Natl Acad Sci U S A. 2019 Jun 25;116(26):12895-12900. doi: 10.1073/pnas.1903866116. Epub 2019 Jun 10.
5
Decoupled taxonomic and ecological recoveries from the Permo-Triassic extinction.
Sci Adv. 2018 Oct 10;4(10):eaat5091. doi: 10.1126/sciadv.aat5091. eCollection 2018 Oct.
6
Limits to species richness in terrestrial communities.
Ecol Lett. 2018 Dec;21(12):1781-1789. doi: 10.1111/ele.13152. Epub 2018 Oct 1.
7
The rise of the ruling reptiles and ecosystem recovery from the Permo-Triassic mass extinction.
Proc Biol Sci. 2018 Jun 13;285(1880). doi: 10.1098/rspb.2018.0361.
8
UV-B-induced forest sterility: Implications of ozone shield failure in Earth's largest extinction.
Sci Adv. 2018 Feb 7;4(2):e1700618. doi: 10.1126/sciadv.1700618. eCollection 2018 Feb.
10
Tetrapod distribution and temperature rise during the Permian-Triassic mass extinction.
Proc Biol Sci. 2018 Jan 10;285(1870). doi: 10.1098/rspb.2017.2331.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验