School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore.
School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Republic of Singapore.
FEBS Lett. 2020 Sep;594(17):2829-2839. doi: 10.1002/1873-3468.13864. Epub 2020 Jul 20.
The ability of Mycobacteria to overcome oxidative stress is of paramount importance for its survival within the host. One of the key enzymes that are involved in protecting the bacterium from reactive oxygen species is the catalase-peroxidase (KatG). However, in strains resistant to the antibiotic isoniazid, KatG is rendered ineffective, which is associated with an increased expression of alkylhydroperoxide reductase subunit C (AhpC). Mycobacterial AhpC possesses a unique helical displacement when compared to its bacterial counterparts. Here, via mutagenesis studies, we demonstrate the importance of this helix for redox modulation of the catalytic activity of AhpC. Along with structural insights from crystallographic data, the impact of critical residues on the structure and flexibility of the helix and on AhpC oligomerization is described.
分枝杆菌克服氧化应激的能力对其在宿主内的生存至关重要。参与保护细菌免受活性氧的关键酶之一是过氧化氢酶过氧化物酶(KatG)。然而,在对抗生素异烟肼有耐药性的菌株中,KatG 变得无效,这与烷基氢过氧化物还原酶亚单位 C(AhpC)的表达增加有关。分枝杆菌 AhpC 与细菌对应物相比具有独特的螺旋位移。在这里,通过诱变研究,我们证明了该螺旋在调节 AhpC 的催化活性的氧化还原方面的重要性。结合晶体学数据的结构见解,描述了关键残基对螺旋的结构和灵活性以及 AhpC 寡聚化的影响。