Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China; Zhejiang Provincial Key Laboratory of Watershed Science & Health, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; Fujian Provincial Key Laboratory of Resource and Environment Monitoring & Sustainable Management and Utilization, College of Resources and Chemical Engineering, Sanming University, Sanming 365000, People's Republic of China.
School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, People's Republic of China.
Sci Total Environ. 2020 Oct 20;740:140080. doi: 10.1016/j.scitotenv.2020.140080. Epub 2020 Jun 9.
Intimate coupling of microbial extracellular electron transfer (EET) and photoelectrochemical processes is an emerging research area with great potential to circumvent many disadvantages associated with traditional techniques that depend on independent microbial or photocatalysis treatment. Microbial EET processes involve microorganism oxidation of extracellular electron donors for respiration and synchronous reduction of extracellular electron acceptors to form an integrated respiratory chain. Coupled microbial EET-photoelectrochemical technologies greatly improve energy conversion efficiency providing both economic and environmental benefits. Among substitutes for semiconductor photocatalysts, cadmium sulfide nanoparticles (CdS NPs) possess several attractive properties. Specifically, CdS NPs have suitable electrical conductivity, large specific surface area, visible light-driven photocatalysis capability and robust biocompatibility, enabling them to promote hybrid microbial-photoelectrochemical processes. This review highlights recent advances in intimately coupled CdS NPs-microbial extracellular electron transfer systems and examines the mechanistic pathways involved in photoelectrochemical transformations. Finally, the prospects for emerging applications utilizing hybrid CdS NPs-based microbial-photoelectrochemical technologies are assessed. As such, this review provides a rigorous fundamental analysis of electron transport dynamics for hybrid CdS NPs-microbial photoelectrochemical processes and explores the applicability of engineered CdS NPs-biohybrids for future applications, such as in environmental remediation and clean-energy production.
微生物细胞外电子传递 (EET) 和光电化学过程的紧密偶联是一个新兴的研究领域,具有很大的潜力,可以克服许多传统技术的缺点,这些技术依赖于独立的微生物或光催化处理。微生物 EET 过程涉及微生物对细胞外电子供体的氧化作用,用于呼吸,以及同时对细胞外电子受体的还原作用,以形成一个集成的呼吸链。耦合的微生物 EET-光电化学技术极大地提高了能量转换效率,提供了经济和环境效益。在半导体光催化剂的替代品中,硫化镉纳米粒子 (CdS NPs) 具有许多吸引人的特性。具体来说,CdS NPs 具有合适的导电性、大的比表面积、可见光驱动的光催化能力和稳健的生物相容性,使它们能够促进混合微生物光电化学过程。本文综述了紧密耦合的 CdS NPs-微生物细胞外电子传递系统的最新进展,并研究了光电化学转化中涉及的机制途径。最后,评估了利用混合 CdS NPs 基微生物光电化学技术的新兴应用前景。因此,本文对混合 CdS NPs-微生物光电化学过程中的电子输运动力学进行了严格的基础分析,并探讨了工程化 CdS NPs-生物杂种在未来应用中的适用性,例如在环境修复和清洁能源生产中。