Suppr超能文献

Hofmeister 效应引导的离子水凝胶设计用于可打印的生物电子器件。

Hofmeister-Effect-Guided Ionohydrogel Design as Printable Bioelectronic Devices.

机构信息

School of Chemical Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.

Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, Shanghai, 200092, P. R. China.

出版信息

Adv Mater. 2020 Jul;32(30):e2000189. doi: 10.1002/adma.202000189. Epub 2020 Jun 21.

Abstract

Bioelectronic platforms convert biological signals into electrical signals by utilizing biocatalysts that provide tools to monitor the activity of cells and tissues. Traditional conducting materials such as solid conductors and conducting polymers are confronted with a great challenge in sophisticated production processes and mismatch at biological tissues-machine interfaces. Furthermore, the biocatalyst, the key functional component in the electron-transfer reaction for bio-signal detection denatures easily in an ionic conductive solution. Herein, a bionic strategy is elaborately developed to synthesize an ionohydrogel bioelectronic platform that possesses extracellular-matrix-like habitat by employing hydrated ionic liquids (HILs) as ionic solvent and bioprotectant. This strategy realizes an integration of ionic and enzymatic electronic circuits and minimization of the disparities between tissues and artificial machines. The Hofmeister effect of HILs on enzyme proteins and polymer chains ensures the high bioactivity of the enzymes and greatly improves the mechanical properties of the ionohydrogels. Moreover, hydrogen bonds formed by ILs, water, and polymer chains greatly improve the water-retention of the ionohydrogel and give it more practical significance. Consequently, the promising ionohydrogel is partly printed and fabricated into wearable devices as a pain-free humoral components monitor and a wireless motion-sensor.

摘要

生物电子平台通过利用生物催化剂将生物信号转换为电信号,这些生物催化剂为监测细胞和组织的活动提供了工具。传统的导电材料,如固体导体和导电聚合物,在复杂的生产工艺和生物组织-机器界面的不匹配方面面临着巨大的挑战。此外,在离子导电溶液中,生物催化剂(电子转移反应中用于生物信号检测的关键功能组件)容易变性。在此,通过将水合离子液体(HIL)用作离子溶剂和生物保护剂,精心开发了一种仿生策略来合成具有细胞外基质样栖息地的离子水凝胶生物电子平台。该策略实现了离子和酶电子电路的集成,并最大限度地减少了组织和人工机器之间的差异。HIL 对酶蛋白和聚合物链的霍夫曼效应确保了酶的高生物活性,并极大地提高了离子水凝胶的机械性能。此外,ILs、水和聚合物链形成的氢键极大地提高了离子水凝胶的保水能力,使其具有更实际的意义。因此,有前途的离子水凝胶被部分打印并制成可穿戴设备,作为无痛体液成分监测器和无线运动传感器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验