Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India.
Laboratory of Drug Design and Discovery, Department of Pharmaceutical Sciences, Dr. Harisingh Gour University, Sagar, India.
J Biomol Struct Dyn. 2021 Aug;39(13):4764-4773. doi: 10.1080/07391102.2020.1780946. Epub 2020 Jun 22.
World Health Organization characterized novel coronavirus disease (COVID-19), caused by severe acute respiratory syndrome (SARS) coronavirus-2 (SARS-CoV-2) as world pandemic. This infection has been spreading alarmingly by causing huge social and economic disruption. In order to response quickly, the inhibitors already designed against different targets of previous human coronavirus infections will be a great starting point for anti-SARS-CoV-2 inhibitors. In this study, our approach integrates different ligand based drug design strategies of some chemicals. The study design was composed of some major aspects: (a) classification QSAR based data mining of diverse SARS-CoV papain-like protease (PLpro) inhibitors, (b) QSAR based virtual screening (VS) to identify molecules that could be effective against putative target SARS-CoV PLpro and (c) finally validation of hits through receptor-ligand interaction analysis. This approach could be used to aid in the process of COVID-19 drug discovery. It will introduce key concepts, set the stage for QSAR based screening of active molecules against putative SARS-CoV-2 PLpro enzyme. Moreover, the QSAR models reported here would be of further use to screen large database. This study will assume that the reader is approaching the field of QSAR and molecular docking based drug discovery against SARS-CoV-2 PLpro with little prior knowledge.Communicated by Ramaswamy H. Sarma.
世界卫生组织将由严重急性呼吸系统综合症冠状病毒 2(SARS-CoV-2)引起的新型冠状病毒疾病(COVID-19)描述为世界性大流行疾病。这种感染通过造成巨大的社会和经济混乱,正在令人震惊地传播。为了快速应对,针对先前人类冠状病毒感染的不同靶标设计的抑制剂将是抗 SARS-CoV-2 抑制剂的一个很好的起点。在这项研究中,我们的方法整合了一些化学物质的不同基于配体的药物设计策略。研究设计由几个主要方面组成:(a)对不同 SARS-CoV 木瓜蛋白酶样蛋白酶(PLpro)抑制剂进行基于分类 QSAR 的数据挖掘,(b)基于 QSAR 的虚拟筛选(VS)以鉴定可能对假定的 SARS-CoV PLpro 靶标有效的分子,以及(c)通过受体-配体相互作用分析对命中物进行最终验证。这种方法可用于辅助 COVID-19 药物发现过程。它将介绍关键概念,为针对假定的 SARS-CoV-2 PLpro 酶的活性分子的基于 QSAR 的筛选奠定基础。此外,这里报告的 QSAR 模型将进一步用于筛选大型数据库。本研究假设读者对基于 QSAR 和基于分子对接的 SARS-CoV-2 PLpro 药物发现领域知之甚少。由 Ramaswamy H. Sarma 传达。