Suppr超能文献

具有椭球体不变面的三维非定常流动的物理拓扑结构。

Physical topology of three-dimensional unsteady flows with spheroidal invariant surfaces.

作者信息

Contreras P S, Speetjens M F M, Clercx H J H

机构信息

Section Energy Technology and Fluid Dynamics and J. M. Burgers Center for Fluid Dynamics, Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.

Section Fluids and Flows and J. M. Burgers Center for Fluid Dynamics, Department of Applied Physics, Eindhoven University of Technology, Eindhoven, The Netherlands.

出版信息

Phys Rev E. 2020 May;101(5-1):053109. doi: 10.1103/PhysRevE.101.053109.

Abstract

Scope is the response of Lagrangian flow topologies of three-dimensional time-periodic flows consisting of spheroidal invariant surfaces to perturbation. Such invariant surfaces generically accommodate nonintegrable Hamiltonian dynamics and, in consequence, intrasurface topologies composed of islands and chaotic seas. Computational studies predict a response to arbitrary perturbation that is dramatically different from the classical case of toroidal invariant surfaces: said islands and chaotic seas evolve into tubes and shells, respectively, that merge into "tube-and-shell" structures consisting of two shells connected via (a) tube(s) by a mechanism termed "resonance-induced merger" (RIM). This paper provides conclusive experimental proof of RIM and advances the corresponding structures as the physical topology of realistic flows with spheroidal invariant surfaces; the underlying unperturbed state is a singular limit that exists only for ideal conditions and cannot be achieved in a physical experiment. This paper furthermore expands existing theory on certain instances of RIM to a comprehensive theory (supported by experiments) that explains all observed instances of this phenomenon. This theory reveals that RIM ensues from perturbed periodic lines via three possible scenarios: truncation of tubes by (i) manifolds of isolated periodic points emerging near elliptic lines or by either (ii) local or (iii) global segmentation of periodic lines into elliptic and hyperbolic parts. The RIM scenario for local segmentation includes a perturbation-induced change from elliptic to hyperbolic dynamics near degenerate points on entirely elliptic lines (denoted "virtual local segmentation"). This theory furthermore demonstrates that RIM indeed accomplishes tube-shell merger by exposing the existence of invariant surfaces that smoothly extend from the tubes into the chaotic shells. These phenomena set the response to perturbation-and physical topology-of flows with spheroidal invariant surfaces fundamentally apart from flows with toroidal invariant surfaces. Its entirely kinematic nature and reliance solely on continuity and solenoidality of the velocity field render the comprehensive theory and its findings universal and generically applicable for (arbitrary perturbation of) basically any incompressible flow-in fact any smooth solenoidal vector field-accommodating spheroidal invariant surfaces.

摘要

范围是由球形不变曲面构成的三维时间周期流的拉格朗日流拓扑对扰动的响应。这种不变曲面通常容纳不可积哈密顿动力学,因此,其内部拓扑由岛和混沌海组成。计算研究预测,对任意扰动的响应与环形不变曲面的经典情况有显著不同:所述岛和混沌海分别演变为管和壳,它们通过一种称为“共振诱导合并”(RIM)的机制合并成由通过(一根或多根)管连接的两个壳组成的“管壳”结构。本文提供了RIM的确凿实验证据,并将相应结构作为具有球形不变曲面的实际流的物理拓扑提出;潜在的未受扰动状态是一个仅在理想条件下存在且无法在物理实验中实现的奇异极限。本文还将关于RIM某些情况的现有理论扩展为一个全面的理论(由实验支持),该理论解释了该现象的所有观察到的情况。该理论表明,RIM通过三种可能的情形由受扰动的周期线产生:(i)在椭圆线附近出现的孤立周期点的流形截断管,或(ii)周期线局部或(iii)全局分割为椭圆和双曲线部分。局部分割的RIM情形包括在完全椭圆线上的退化点附近由扰动引起的从椭圆动力学到双曲线动力学的变化(称为“虚拟局部分割”)。该理论还证明,RIM确实通过揭示从管平滑延伸到混沌壳中的不变曲面的存在来实现管壳合并。这些现象使具有球形不变曲面的流对扰动的响应及物理拓扑与具有环形不变曲面的流从根本上区分开来。其完全运动学的性质以及仅依赖于速度场的连续性和螺线管性,使得该全面理论及其发现具有普遍性,并且通常适用于(任意扰动的)基本上任何不可压缩流——实际上是任何容纳球形不变曲面的光滑螺线管矢量场。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验