Gustafsson Anders, Jiang Nian, Zheng Changlin, Etheridge Joanne, Gao Qiang, Tan Hark Hoe, Jagadish Chennupati, Wong-Leung Jennifer
Solid State Physics and NanoLund, Lund University, Box 118, SE-221 00, Lund, Sweden.
Nanotechnology. 2020 Jun 24;31(42):424001. doi: 10.1088/1361-6528/ab9fb3.
We present spatially and spectrally resolved emission from nanowires with a thin radial layer of GaAs embedded in AlGaAs barriers, grown radially around taper-free GaAs cores. The GaAs layers are thin enough to show quantization, and are quantum wells. Due to their shape, they are referred to as quantum well tubes (QWTs). We have investigated three different nominal QWT thicknesses: 1.5, 2.0, and 6.0 nm. They all show average emission spectra from the QWT with an energy spread corresponding to a thickness variation of ±30%. We observe no thickness gradient along the length of the nanowires. Individual NWs show a number of peaks, corresponding to different QW thicknesses. Apart from the thinnest QWT, the integrated emission from the QWTs shows homogeneous emission intensity along the NW. The thinnest QWTs show patchy emission patterns due to the incomplete coverage of the QWT. We observe a few NWs with larger diameters. The QWTs in these NWs show spatially resolved variations across the NW. An increase in the local thickness of the QWT at the corners blocks the diffusion of carriers from facet to facet, thereby enabling us to visualise the thickness variations of the radial quantum wells.
我们展示了纳米线的空间和光谱分辨发射,这些纳米线在嵌入AlGaAs势垒中的GaAs薄径向层,围绕无锥度的GaAs芯径向生长。GaAs层足够薄以显示量子化,并且是量子阱。由于它们的形状,它们被称为量子阱管(QWT)。我们研究了三种不同的标称QWT厚度:1.5、2.0和6.0纳米。它们都显示了来自QWT的平均发射光谱,其能量展宽对应于±30%的厚度变化。我们没有观察到沿纳米线长度的厚度梯度。单个纳米线显示出多个峰,对应于不同的量子阱厚度。除了最薄的QWT外,QWT的积分发射沿纳米线显示出均匀的发射强度。最薄的QWT由于QWT的覆盖不完全而显示出斑驳的发射图案。我们观察到一些直径较大的纳米线。这些纳米线中的QWT在整个纳米线上显示出空间分辨的变化。QWT在拐角处局部厚度的增加阻止了载流子在面与面之间的扩散,从而使我们能够可视化径向量子阱的厚度变化。