Suppr超能文献

用于多核聚类的共识亲和图学习

Consensus Affinity Graph Learning for Multiple Kernel Clustering.

作者信息

Ren Zhenwen, Yang Simon X, Sun Quansen, Wang Tao

出版信息

IEEE Trans Cybern. 2021 Jun;51(6):3273-3284. doi: 10.1109/TCYB.2020.3000947. Epub 2021 May 18.

Abstract

Significant attention to multiple kernel graph-based clustering (MKGC) has emerged in recent years, primarily due to the superiority of multiple kernel learning (MKL) and the outstanding performance of graph-based clustering. However, many existing MKGC methods design a fat model that poses challenges for computational cost and clustering performance, as they learn both an affinity graph and an extra consensus kernel cumbersomely. To tackle this challenging problem, this article proposes a new MKGC method to learn a consensus affinity graph directly. By using the self-expressiveness graph learning and an adaptive local structure learning term, the local manifold structure of the data in kernel space is preserved for learning multiple candidate affinity graphs from a kernel pool first. After that, these candidate affinity graphs are synthesized to learn a consensus affinity graph via a thin autoweighted fusion model, in which a self-tuned Laplacian rank constraint and a top- k neighbors sparse strategy are introduced to improve the quality of the consensus affinity graph for accurate clustering purposes. The experimental results on ten benchmark datasets and two synthetic datasets show that the proposed method consistently and significantly outperforms the state-of-the-art methods.

摘要

近年来,基于多核图的聚类(MKGC)受到了广泛关注,这主要归功于多核学习(MKL)的优势以及基于图的聚类的出色性能。然而,许多现有的MKGC方法设计了一个复杂的模型,这给计算成本和聚类性能带来了挑战,因为它们在学习亲和图和额外的共识核时都很繁琐。为了解决这个具有挑战性的问题,本文提出了一种新的MKGC方法,直接学习共识亲和图。通过使用自表达图学习和自适应局部结构学习项,首先在内核空间中保留数据的局部流形结构,以便从内核池中学习多个候选亲和图。之后,通过一个精简的自动加权融合模型合成这些候选亲和图,以学习共识亲和图,其中引入了自调整拉普拉斯秩约束和前k个邻居稀疏策略,以提高共识亲和图的质量,实现精确聚类。在十个基准数据集和两个合成数据集上的实验结果表明,该方法始终显著优于现有方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验