Suppr超能文献

土壤中硒化汞颗粒导致的汞甲基化。

Mercury methylation from mercury selenide particles in soils.

机构信息

Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.

Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.

出版信息

J Hazard Mater. 2020 Dec 5;400:123248. doi: 10.1016/j.jhazmat.2020.123248. Epub 2020 Jun 18.

Abstract

Selenium-inhibited monomethylmercury (MeHg) production is an attractive strategy for mitigating the risks of MeHg exposure. However, it is poorly understood the methylation potential of mercury selenide (HgSe) particles during their aging in soils and sediments. Net MeHg production in three floodplain soils amended with different geochemical species of mercury selenides, i.e., dissolved inorganic mercury freshly mixed with selenite (Hg(II)+Se(IV)), HgSe nanoparticles (45.2 ± 0.5 nm) and microparticles (> 1 μm) is examined. Among mercury types, the methylation from nanoparticulate HgSe was similar to (0.05 - 0.5 % vs. 0.1 - 0.4 %, yellow brown soil) or 12.9 - 21.0 times lower (0.02 - 0.1 vs. 0.6 - 1.5 %, black soil) than that from Hg(II)+Se(IV); however, net MeHg production from HgSe nanoparticles (0.02 - 0.5 %) was 1.9 - 15.5 times greater than HgSe microparticles (< 0.05 %) in all soils. Furthermore, net MeHg production from nanoparticulate HgSe varied significantly among soil types, attributable to differences in soil organic matter contents (2.4-5.8%) and microbial methylator community among soils. These results address the importance of geochemical intermediates of mercury selenide precipitation reactions and soil properties in MeHg production, and develop Se-based remediation strategy to minimize negative effects of MeHg on environmental and human health.

摘要

硒抑制一甲基汞(MeHg)的生成是减轻 MeHg 暴露风险的一种有吸引力的策略。然而,对于汞硒化物(HgSe)颗粒在土壤和沉积物中老化过程中的甲基化潜力,人们的了解甚少。本研究考察了在三种漫滩土壤中添加不同地球化学形态的汞硒化物(新鲜混合亚硒酸盐的溶解无机汞(Hg(II)+Se(IV))、HgSe 纳米颗粒(45.2 ± 0.5nm)和微粒(>1μm))后,HgSe 颗粒对 MeHg 生成的净影响。在汞类型中,纳米颗粒 HgSe 的甲基化作用与 Hg(II)+Se(IV)的类似(0.05-0.5%比 0.1-0.4%,黄棕壤)或低 12.9-21.0 倍(0.02-0.1%比 0.6-1.5%,黑土);然而,所有土壤中,HgSe 纳米颗粒(0.02-0.5%)的净 MeHg 生成量比 HgSe 微粒(<0.05%)高 1.9-15.5 倍。此外,纳米颗粒 HgSe 的净 MeHg 生成量在不同土壤类型之间差异显著,这归因于土壤有机质含量(2.4-5.8%)和土壤中微生物甲基化剂群落的差异。这些结果表明,汞硒化物沉淀反应的地球化学中间体和土壤特性在 MeHg 生成中具有重要作用,并为开发基于硒的修复策略以最小化 MeHg 对环境和人类健康的负面影响提供了依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验