Suppr超能文献

鉴定和描述发育中肾间质细胞的异质性。

Identification and characterization of cellular heterogeneity within the developing renal interstitium.

机构信息

Department of Molecular Biology and Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

Department of Internal Medicine, Division of Nephrology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.

出版信息

Development. 2020 Aug 14;147(15):dev190108. doi: 10.1242/dev.190108.

Abstract

Kidney formation requires the coordinated growth of multiple cell types including the collecting ducts, nephrons, vasculature and interstitium. There is a long-held belief that interactions between progenitors of the collecting ducts and nephrons are primarily responsible for kidney development. However, over the last several years, it has become increasingly clear that multiple aspects of kidney development require signaling from the interstitium. How the interstitium orchestrates these various roles is poorly understood. Here, we show that during development the interstitium is a highly heterogeneous patterned population of cells that occupies distinct positions correlated to the adjacent parenchyma. Our analysis indicates that the heterogeneity is not a mere reflection of different stages in a linear developmental trajectory but instead represents several novel differentiated cell states. Further, we find that β-catenin has a cell autonomous role in the development of a medullary subset of the interstitium and that this non-autonomously affects the development of the adjacent epithelia. These findings suggest the intriguing possibility that the different interstitial subtypes may create microenvironments that play unique roles in development of the adjacent epithelia and endothelia.

摘要

肾脏的形成需要多种细胞类型的协调生长,包括集合管、肾单位、脉管系统和间质。长期以来,人们一直认为集合管和肾单位的祖细胞之间的相互作用主要负责肾脏的发育。然而,在过去的几年中,越来越明显的是,肾脏发育的多个方面需要间质的信号。间质如何协调这些不同的作用还知之甚少。在这里,我们表明,在发育过程中,间质是一个高度异质的细胞群体,占据与相邻实质相关的不同位置。我们的分析表明,这种异质性不是线性发育轨迹中不同阶段的简单反映,而是代表了几种新的分化细胞状态。此外,我们发现β-catenin 在间质的髓质亚群的发育中具有细胞自主作用,并且这种作用非自主地影响相邻上皮的发育。这些发现表明,不同的间质亚型可能创造了微环境,这些微环境在相邻上皮和内皮的发育中发挥独特作用,这是一个有趣的可能性。

相似文献

1
2
Stromal β-catenin overexpression contributes to the pathogenesis of renal dysplasia.
J Pathol. 2016 Jun;239(2):174-85. doi: 10.1002/path.4713. Epub 2016 Apr 23.
3
β-Catenin in stromal progenitors controls medullary stromal development.
Am J Physiol Renal Physiol. 2018 Jun 1;314(6):F1177-F1187. doi: 10.1152/ajprenal.00282.2017. Epub 2018 Jan 10.
5
Expression of ILK in renal stroma is essential for multiple aspects of renal development.
Am J Physiol Renal Physiol. 2018 Aug 1;315(2):F374-F385. doi: 10.1152/ajprenal.00509.2017. Epub 2018 Apr 11.
6
Stromal progenitors are important for patterning epithelial and mesenchymal cell types in the embryonic kidney.
Semin Cell Dev Biol. 2003 Aug;14(4):225-31. doi: 10.1016/s1084-9521(03)00025-9.
7
Stromal cells mediate retinoid-dependent functions essential for renal development.
Development. 1999 Mar;126(6):1139-48. doi: 10.1242/dev.126.6.1139.
8
Elf5 is a principal cell lineage specific transcription factor in the kidney that contributes to Aqp2 and Avpr2 gene expression.
Dev Biol. 2017 Apr 1;424(1):77-89. doi: 10.1016/j.ydbio.2017.02.007. Epub 2017 Feb 17.
10
Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis.
Nature. 2015 Oct 22;526(7574):564-8. doi: 10.1038/nature15695. Epub 2015 Oct 7.

引用本文的文献

1
In vitro generation of a ureteral organoid from pluripotent stem cells.
Nat Commun. 2025 Jun 20;16(1):5309. doi: 10.1038/s41467-025-60693-6.
2
Polysialic acid regulates glomerular microvasculature formation by interaction with VEGF-A188 in mice.
Angiogenesis. 2025 May 24;28(3):31. doi: 10.1007/s10456-025-09984-6.
3
Defects in nephrogenesis result in an expansion of the + stromal progenitor population.
bioRxiv. 2025 Feb 11:2025.02.10.637031. doi: 10.1101/2025.02.10.637031.
4
Permanent defects in renal medullary structure and function after reversal of urinary obstruction.
JCI Insight. 2025 Jan 23;10(5):e187008. doi: 10.1172/jci.insight.187008.
5
Epithelial tubule interconnection driven by HGF-Met signaling in the kidney.
Proc Natl Acad Sci U S A. 2024 Dec 24;121(52):e2416887121. doi: 10.1073/pnas.2416887121. Epub 2024 Dec 20.
6
The Impact of Gestational Diabetes on Kidney Development: is There an Epigenetic Link?
Curr Diab Rep. 2024 Dec 18;25(1):13. doi: 10.1007/s11892-024-01569-9.
7
Developmental and Cell Fate Analyses Support a Postnatal Origin for the Cortical Collecting System in the Mouse Kidney.
J Am Soc Nephrol. 2025 May 1;36(5):812-824. doi: 10.1681/ASN.0000000579. Epub 2024 Dec 11.
9
Jamming of nephron-forming niches in the developing mouse kidney creates cyclical mechanical stresses.
Nat Mater. 2024 Nov;23(11):1582-1591. doi: 10.1038/s41563-024-02019-3. Epub 2024 Oct 9.
10
Measurement of adhesion and traction of cells at high yield reveals an energetic ratchet operating during nephron condensation.
Proc Natl Acad Sci U S A. 2024 Sep 24;121(39):e2404586121. doi: 10.1073/pnas.2404586121. Epub 2024 Sep 18.

本文引用的文献

4
Stromal control of intestinal development and the stem cell niche.
Differentiation. 2019 Jul-Aug;108:8-16. doi: 10.1016/j.diff.2019.01.001. Epub 2019 Jan 8.
7
Single-Cell RNA Sequencing of the Adult Mouse Kidney: From Molecular Cataloging of Cell Types to Disease-Associated Predictions.
Am J Kidney Dis. 2019 Jan;73(1):140-142. doi: 10.1053/j.ajkd.2018.07.002. Epub 2018 Sep 18.
8
RNA velocity of single cells.
Nature. 2018 Aug;560(7719):494-498. doi: 10.1038/s41586-018-0414-6. Epub 2018 Aug 8.
10
beachmat: A Bioconductor C++ API for accessing high-throughput biological data from a variety of R matrix types.
PLoS Comput Biol. 2018 May 3;14(5):e1006135. doi: 10.1371/journal.pcbi.1006135. eCollection 2018 May.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验