Suppr超能文献

细分群体中的杂合度划分:对Nei分解的一些误用及一种替代性概率方法。

Partitioning heterozygosity in subdivided populations: Some misuses of Nei's decomposition and an alternative probabilistic approach.

作者信息

Lefèvre François, Gallais André

机构信息

Ecologie des Forêts Méditerranéennes, URFM, INRAE, Avignon, France.

UMR Génétique Quantitative et Evolution, INRAE-UPS-CNRS, Gif-sur-Yvette, France.

出版信息

Mol Ecol. 2020 Aug;29(16):2957-2962. doi: 10.1111/mec.15527. Epub 2020 Aug 29.

Abstract

Nei's decomposition of total expected heterozygosity in subdivided populations into within- and between-subpopulation components, H and D , respectively, is a classical tool in the conservation and management of genetic resources. Reviewing why this is not a decomposition into independent terms of within- and between-subpopulation gene diversity, we illustrate how this approach can be misleading because it overemphasizes the within-subpopulation component compared to Jost's nonadditive decomposition based on gene diversity indices. Using probabilistic partitioning of the total expected heterozygosity into independent within- and between-subpopulation contributions, we show that the contribution of the within-subpopulation expected heterozygosity to the total expected heterozygosity is not H , as suggested by Nei's decomposition, but H /s, with s being the number of subpopulations. Finally, we compare three possible approaches of decomposing total heterozygosity in subdivided populations (i.e., Nei's decomposition, Jost's approach, and probabilistic partitioning) with regard to independence between terms and sensitivity to unequal subpopulation sizes. For the conservation and management of genetic resources, we recommend using probabilistic partitioning and Jost's differentiation parameter rather than Nei's decomposition.

摘要

内氏将细分群体中总期望杂合度分别分解为亚群体内和亚群体间的成分,即H和D,这是遗传资源保护和管理中的经典工具。通过回顾为何这不是对亚群体内和亚群体间基因多样性的独立项分解,我们说明了这种方法为何具有误导性,因为与基于基因多样性指数的约斯特非加性分解相比,它过度强调了亚群体内成分。通过将总期望杂合度概率性地划分为独立的亚群体内和亚群体间贡献,我们表明亚群体内期望杂合度对总期望杂合度的贡献并非如内氏分解所暗示的那样是H,而是H/s,其中s是亚群体的数量。最后,我们比较了细分群体中总杂合度分解的三种可能方法(即内氏分解、约斯特方法和概率性划分)在项间独立性和对亚群体大小不等的敏感性方面的差异。对于遗传资源的保护和管理,我们建议使用概率性划分和约斯特分化参数,而非内氏分解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验