Suppr超能文献

采用 3D-QSPR 方法预测过渡金属 Y、La 和 UO2+与有机配体的稳定常数。

Predicting stability constants of transition metals; Y, La, and UO with organic ligands using the 3D-QSPR methodology.

机构信息

Department of Chemistry, University of Zabol, Zabol, Iran.

Nuclear Science and Technology Research Institute, Tehran, Iran.

出版信息

J Recept Signal Transduct Res. 2021 Feb;41(1):59-66. doi: 10.1080/10799893.2020.1787443. Epub 2020 Jul 2.

Abstract

Stability constants prediction plays a critical role in the identification and optimization of ligand design for selective complexation of metal ions in solution. Thus, it is important to assess the potential of metal-binding ligand organic in the complex formation process. However, quantitative structure-activity/property relationships (QSAR/QSPR) provide a time-and cost-efficient approach to predict the stability constants of compounds. To this end, we applied a free alignment three-dimensional QSPR technique by generating GRid-INdependent Descriptors (GRINDs) to rationalize the underlying factors effecting on stability constants of transition metals; 105 (Y), 186 (La), and 66 (UO ) with diverse organic ligands in aqueous solutions at 298 K and an ionic strength of 0.1 M. Kennard- Stone algorithm was employed to split data set to a training set of 75% molecules and a test set of 25% molecules. Fractional factorial design (FFD) and genetic algorithm (GA) applied to derive the most relevant and optimal 3 D molecular descriptors. The selected descriptors using various feature selection were correlated with stability constants by partial least squares (PLS). GA-PLS models were statistically validated (  = 0.96, q = 0.82 and R =0.81 for Y;  = 0.90, q = 0.73 and R =0.82 for La and  = 0.95, q = 0.81 and R =0.88 for UO ), and from the information derived from the graphical results confirmed that hydrogen bonding properties, shape, size, and steric effects are the main parameters influencing stability constant of metal complexation. The provided information in this research can predict the stability constant of the new organic ligand with the transition metals without experimental processes.

摘要

稳定常数预测在识别和优化配体设计以选择性络合溶液中的金属离子方面起着至关重要的作用。因此,评估金属结合配体有机化合物在络合过程中的潜力是很重要的。然而,定量构效关系(QSAR/QSPR)提供了一种既省时又经济的方法来预测化合物的稳定常数。为此,我们应用了一种自由对齐三维 QSPR 技术,通过生成 GRid-INdependent Descriptors(GRINDs)来合理化影响过渡金属稳定常数的潜在因素;在 298 K 和 0.1 M 的离子强度下,在水溶液中与 105(Y)、186(La)和 66(UO )等多种有机配体络合。Kendard-Stone 算法被用于将数据集分为 75%分子的训练集和 25%分子的测试集。分数阶因子设计(FFD)和遗传算法(GA)被应用于推导最相关和最优的 3D 分子描述符。使用各种特征选择选择的描述符通过偏最小二乘法(PLS)与稳定常数相关联。GA-PLS 模型经过统计学验证(Y 的  = 0.96,q = 0.82 和 R =0.81;La 的  = 0.90,q = 0.73 和 R =0.82;UO 的  = 0.95,q = 0.81 和 R =0.88),从图形结果得出的信息证实,氢键性质、形状、大小和空间位阻是影响金属络合稳定常数的主要参数。本研究提供的信息可以在不进行实验过程的情况下预测新有机配体与过渡金属的稳定常数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验