Suppr超能文献

面向 5G 时代 FiWi 接入网的 QoE 感知能量供应方案

A QoE-Aware Energy Supply Scheme over a FiWi Access Network in the 5G Era.

机构信息

School of Communication and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China.

Chongqing Key Laboratory of Optical Communication and Networks, Chongqing 400065, China.

出版信息

Sensors (Basel). 2020 Jul 7;20(13):3794. doi: 10.3390/s20133794.

Abstract

Integrated fiber-wireless (FiWi) should be regarded as a promising access network architecture in future 5G networks, and beyond; this due to its seamless combination of flexibility, ubiquity, mobility of the wireless mesh network (WMN) frontend with a large capacity, high bandwidth, strong robustness in time, and a wavelength-division multiplexed passive optical network (TWDM-PON) backhaul. However, the key issue in both traditional human-to-human (H2H) traffic and emerging Tactile Internet is the energy conservation network operation. Therefore, a power-saving method should be instrumental in the wireless retransmission-enabled architecture design. Toward this end, this paper firstly proposes a novel energy-supply paradigm of the FiWi converged network infrastructure, i.e., the emerging power over fiber (PoF) technology instead of an external power supply. Then, the existing time-division multiplexing access (TDMA) scheme and PoF technology are leveraged to carry out joint dynamic bandwidth allocation (DBA) and provide enough power for the sleep schedule in each integrated optical network unit mesh portal point (ONU-MPP) branch. Additionally, the correlation between the transmitted optical power of the optical line terminal (OLT) and the quality of experience (QoE) guarantee caused by multiple hops in the wireless frontend is taken into consideration in detail. The research results prove that the envisioned paradigm can significantly reduce the energy consumption of the whole FiWi system while satisfying the average delay constraints, thus providing enough survivability for multimode optical fiber.

摘要

集成光纤无线(FiWi)应被视为未来 5G 网络及以后的一种有前途的接入网架构;这是由于其无线网状网络(WMN)前端的灵活性、无处不在性和移动性与大容量、高带宽、强时间鲁棒性和波分复用无源光网络(TWDM-PON)回程的无缝结合。然而,在传统的人与人(H2H)流量和新兴的触觉互联网中,关键问题是节能网络操作。因此,节能方法应该是在无线重传启用的架构设计中起作用的。为此,本文首先提出了一种新颖的 FiWi 融合网络基础设施的能源供应范例,即新兴的光纤供电(PoF)技术而不是外部电源。然后,利用现有的时分复用接入(TDMA)方案和 PoF 技术,联合进行动态带宽分配(DBA),并为每个集成光网络单元网格门户点(ONU-MPP)分支的睡眠计划提供足够的电力。此外,还详细考虑了光线路终端(OLT)的传输光功率与无线前端中多个跳数引起的体验质量(QoE)保证之间的相关性。研究结果表明,所设想的范例可以在满足平均延迟约束的同时,显著降低整个 FiWi 系统的能耗,从而为多模光纤提供足够的生存能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/573b/7374277/9d4eb5e381f8/sensors-20-03794-g001.jpg

相似文献

1
A QoE-Aware Energy Supply Scheme over a FiWi Access Network in the 5G Era.
Sensors (Basel). 2020 Jul 7;20(13):3794. doi: 10.3390/s20133794.
2
Wavelength-agile and radio-agile FiWi access network using dynamic scheduling to improve upstream delay and resource utilization.
Heliyon. 2019 Jul 19;5(7):e02075. doi: 10.1016/j.heliyon.2019.e02075. eCollection 2019 Jul.
4
Fiber wireless (FiWi) access network: ONU placement and reduction in average communication distance using whale optimization algorithm.
Heliyon. 2019 Mar 28;5(3):e01311. doi: 10.1016/j.heliyon.2019.e01311. eCollection 2019 Mar.
5
Sleep-aware wavelength and bandwidth assignment scheme for TWDM PON.
Opt Quantum Electron. 2021;53(6):295. doi: 10.1007/s11082-021-02955-3. Epub 2021 Jun 10.
7
Characterization of energy-efficient and colorless ONUs for future TWDM-PONs.
Opt Express. 2013 Sep 9;21(18):20747-61. doi: 10.1364/OE.21.020747.
8
Energy-saving framework for passive optical networks with ONU sleep/doze mode.
Opt Express. 2015 Feb 9;23(3):A1-14. doi: 10.1364/OE.23.0000A1.
9
28 Gb/s duobinary signal transmission over 40 km based on 10 GHz DML and PIN for 100 Gb/s PON.
Opt Express. 2015 Aug 10;23(16):20249-56. doi: 10.1364/OE.23.020249.
10
Bayesian auction game theory-based DBA for XG symmetrical PON.
Opt Quantum Electron. 2022;54(5):316. doi: 10.1007/s11082-022-03721-9. Epub 2022 Apr 29.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验