Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139;
School of Oceanography, Shanghai Jiao Tong University, 200030 Shanghai, China.
Proc Natl Acad Sci U S A. 2020 Jul 28;117(30):17599-17606. doi: 10.1073/pnas.2006379117. Epub 2020 Jul 9.
Fossilized carotenoid hydrocarbons provide a window into the physiology and biochemistry of ancient microbial phototrophic communities for which only a sparse and incomplete fossil record exists. However, accurate interpretation of carotenoid-derived biomarkers requires detailed knowledge of the carotenoid inventories of contemporary phototrophs and their physiologies. Here we report two distinct patterns of fossilized C diaromatic carotenoids. Phanerozoic marine settings show distributions of diaromatic hydrocarbons dominated by isorenieratane, a biomarker derived from low-light-adapted phototrophic green sulfur bacteria. In contrast, isorenieratane is only a minor constituent within Neoproterozoic marine sediments and Phanerozoic lacustrine paleoenvironments, for which the major compounds detected are renierapurpurane and renieratane, together with some novel C and C carotenoid degradation products. This latter pattern can be traced to cyanobacteria as shown by analyses of cultured taxa and laboratory simulations of sedimentary diagenesis. The cyanobacterial carotenoid synechoxanthin, and its immediate biosynthetic precursors, contain thermally labile, aromatic carboxylic-acid functional groups, which upon hydrogenation and mild heating yield mixtures of products that closely resemble those found in the Proterozoic fossil record. The Neoproterozoic-Phanerozoic transition in fossil carotenoid patterns likely reflects a step change in the surface sulfur inventory that afforded opportunities for the expansion of phototropic sulfur bacteria in marine ecosystems. Furthermore, this expansion might have also coincided with a major change in physiology. One possibility is that the green sulfur bacteria developed the capacity to oxidize sulfide fully to sulfate, an innovation which would have significantly increased their capacity for photosynthetic carbon fixation.
化石化的类胡萝卜素碳氢化合物为我们提供了一个了解古代微生物光养生物群的生理学和生物化学的窗口,因为这些微生物只有稀疏且不完整的化石记录。然而,准确解释类胡萝卜素衍生的生物标志物需要详细了解当代光养生物的类胡萝卜素成分及其生理学特性。在这里,我们报告了两种截然不同的化石 C 二芳基类胡萝卜素模式。显生宙海洋环境中的二芳基烃分布主要由异雷尼尔烷主导,这是一种源自低光适应的光养绿硫细菌的生物标志物。相比之下,异雷尼尔烷只是新元古代海洋沉积物和显生宙湖泊古环境中含量较少的成分,在这些环境中检测到的主要化合物是雷尼尔紫烷和雷尼尔烷,以及一些新的 C 和 C 类胡萝卜素降解产物。这种后一种模式可以追溯到蓝细菌,这一点可以通过对培养的分类群和实验室模拟沉积成岩作用的分析来证明。蓝细菌类胡萝卜素岩藻黄素及其直接生物合成前体含有热不稳定的芳基羧酸官能团,这些官能团在加氢和温和加热下生成的产物混合物与前寒武纪化石记录中发现的产物非常相似。在化石类胡萝卜素模式中,新元古代到显生宙的转变可能反映了表面硫储量的重大变化,这为海洋生态系统中光养硫细菌的扩张提供了机会。此外,这种扩张可能也与生理学上的重大变化同时发生。一种可能性是绿硫细菌发展出了将硫化物完全氧化为硫酸盐的能力,这一创新极大地提高了它们进行光合作用固定碳的能力。