Suppr超能文献

串联体效率作为同位素标记内标用于过敏原定量的比较研究。

Comparative study of concatemer efficiency as an isotope-labelled internal standard for allergen quantification.

机构信息

CER Groupe, Rue du Point du Jour 8, 6900 Marloie, Belgium; Laboratory of Biochemistry and Cell Biology (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur, 61, Rue de Bruxelles, 5000 Namur, Belgium.

Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, 9090 Melle, Belgium.

出版信息

Food Chem. 2020 Dec 1;332:127413. doi: 10.1016/j.foodchem.2020.127413. Epub 2020 Jun 27.

Abstract

Mass spectrometry-based methods coupled with stable isotope dilution have become effective and widely used methods for the detection and quantification of food allergens. Current methods target signature peptides resulting from proteolytic digestion of proteins of the allergenic ingredient. The choice of appropriate stable isotope-labelled internal standard is crucial, given the diversity of encountered food matrices which can affect sample preparation and analysis. We propose the use of concatemer, an artificial and stable isotope-labelled protein composed of several concatenated signature peptides as internal standard. With a comparative analysis of three matrices contaminated with four allergens (egg, milk, peanut, and hazelnut), the concatemer approach was found to offer advantages associated with the use of labelled proteins, ideal but unaffordable, and circumvent certain limitations of traditionally used synthetic peptides as internal standards. Although used in the proteomic field for more than a decade, concatemer strategy has not yet been applied for food analysis.

摘要

基于质谱的方法结合稳定同位素稀释已成为检测和定量食物过敏原的有效且广泛应用的方法。目前的方法针对的是过敏原成分的蛋白质经蛋白水解消化后产生的特征肽。鉴于所遇到的食物基质的多样性会影响样品制备和分析,因此选择合适的稳定同位素标记内标至关重要。我们建议使用连接体作为内标,连接体是一种由几个连接的特征肽组成的人工稳定同位素标记的蛋白质。通过对三种基质(鸡蛋、牛奶、花生和榛子)污染的四个过敏原的比较分析,发现连接体方法具有使用标记蛋白的优点,即理想但昂贵,并且可以避免传统上用作内标物的合成肽的某些限制。尽管连接体策略在蛋白质组学领域已经使用了十多年,但尚未应用于食品分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验