Suppr超能文献

肱二头肌肌腱长头隐匿性不稳定及肩胛下肌肌腱内隐匿性撕裂。

Hidden Long Head of the Biceps Tendon Instability and Concealed Intratendinous Subscapularis Tears.

作者信息

Chae Sang Hoon, Jung Tae Wan, Lee Sang Hyeon, Kim Myo Jong, Park Seung Min, Jung Jeung Yeol, Yoo Jae Chul

机构信息

Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.

Department of Orthopaedics, Graduate School, Kyung Hee University, Seoul, Republic of Korea.

出版信息

Orthop J Sports Med. 2020 Jan 31;8(1):2325967119898123. doi: 10.1177/2325967119898123. eCollection 2020 Jan.

Abstract

BACKGROUND

Few studies have described the characteristics of a concealed intratendinous subscapularis tear (CIST), and there is a lack of research on the preoperative predictability of such lesions.

PURPOSE

To describe the characteristics of a CIST as seen on magnetic resonance imaging (MRI) and intraoperatively and to develop a scoring system for predicting such lesions.

STUDY DESIGN

Case series; Level of evidence, 4.

METHODS

Retrospectively, we identified 43 patients with CISTs among 442 consecutive patients who had undergone rotator cuff repair from July 2014 to June 2016. Range of motion, visual analog scale results for pain and function, and patient-reported outcome scores were evaluated preoperatively and at 1 and 2 years postoperatively. CISTs were classified arthroscopically as small (<5 mm), medium (5-10 mm), and large (>10 mm). We performed repair (≥50%) or debridement (<50%) depending on the total subscapularis tendon tear size including the CIST. Preoperative MRI findings were analyzed by 2 observers and were correlated with the arthroscopic findings. A 10-point scoring system was developed based on characteristics during the physical examination (anterior tenderness, bear hug sign), MRI (biceps tendon displacement and subluxation, subscapularis signal change just lateral to the lesser tuberosity), and arthroscopic surgery (medial biceps tendon lesion, combined subscapularis tendon tear), with a cutoff value of ≥7 predicting a CIST. After the retrospective study, we prospectively enrolled 95 patients to validate the 10-point CIST scoring system.

RESULTS

All 43 patients diagnosed with a CIST during the retrospective study improved both range of motion and functional scores at 1 year postoperatively. The interrater agreement of the 2 observers was substantial for the evaluation of all parameters except for subscapularis tear classification, which was moderate. On arthroscopic surgery, 11 small, 19 medium, and 13 large CISTs were detected. The preliminary prospective study showed a sensitivity of 61.9%, specificity of 94.3%, positive predictive value of 89.0%, negative predictive value of 75.7%, and accuracy of 80.0% when the cutoff value was set at ≥7 on the CIST scoring system.

CONCLUSION

A CIST can be suspected using a combination of preoperative MRI and intra-articular diagnostic arthroscopic findings, but a definitive diagnosis requires an arthroscopic view. On the 10-point CIST scoring system, a score of ≥5 can be suggestive of a CIST, and a score of ≥7 is most likely to predict a CIST.

摘要

背景

很少有研究描述隐匿性肩胛下肌腱内撕裂(CIST)的特征,并且缺乏对此类损伤术前可预测性的研究。

目的

描述磁共振成像(MRI)和术中所见的CIST特征,并开发一种预测此类损伤的评分系统。

研究设计

病例系列;证据等级,4级。

方法

我们回顾性地在2014年7月至2016年6月期间接受肩袖修复的442例连续患者中确定了43例CIST患者。术前、术后1年和2年评估活动范围、疼痛和功能的视觉模拟量表结果以及患者报告的结局评分。CIST在关节镜下分为小(<5 mm)、中(5 - 10 mm)和大(>10 mm)三类。我们根据包括CIST在内的肩胛下肌腱总撕裂大小进行修复(≥50%)或清创(<50%)。2名观察者分析术前MRI结果,并与关节镜检查结果进行相关性分析。基于体格检查(前方压痛、熊抱征)、MRI(肱二头肌腱移位和半脱位、小结节外侧肩胛下肌信号改变)和关节镜手术(内侧肱二头肌腱损伤、肩胛下肌腱联合撕裂)的特征开发了一个10分评分系统,临界值≥7分预测CIST。回顾性研究后,我们前瞻性纳入95例患者以验证10分CIST评分系统。

结果

回顾性研究中所有43例诊断为CIST的患者术后1年活动范围和功能评分均有所改善。除肩胛下肌撕裂分类的观察者间一致性为中等外,2名观察者对所有参数评估的一致性都很高。在关节镜手术中,检测到11例小CIST、19例中CIST和13例大CIST。初步前瞻性研究表明,当CIST评分系统的临界值设定为≥7分时,敏感性为61.9%,特异性为94.3%,阳性预测值为89.0%,阴性预测值为75.7%,准确性为80.0%。

结论

结合术前MRI和关节内诊断性关节镜检查结果可怀疑CIST,但明确诊断需要关节镜观察。在10分CIST评分系统中,≥5分可能提示CIST,≥7分最有可能预测CIST。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/be02/7333499/e37723363ddc/10.1177_2325967119898123-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验