Biophysics of Tropical Diseases Max Planck Tandem Group, University of Antioquia UdeA, Calle 70 No. 52-21, Medellín, Colombia.
Computational Drug Design and Biomedical Informatics Laboratory, Translational Medicine Research Institute (IIMT), CONICET-Universidad Austral, Pilar, Buenos Aires, Argentina.
J Comput Aided Mol Des. 2020 Oct;34(10):1063-1077. doi: 10.1007/s10822-020-00329-7. Epub 2020 Jul 12.
Computer-aided strategies are useful for reducing the costs and increasing the success-rate in drug discovery. Among these strategies, methods based on pharmacophores (an ensemble of electronic and steric features representing the target active site) are efficient to implement over large compound libraries. However, traditional pharmacophore-based methods require knowledge of active compounds or ligand-receptor structures, and only few ones account for target flexibility. Here, we developed a pharmacophore-based virtual screening protocol, Flexi-pharma, that overcomes these limitations. The protocol uses molecular dynamics (MD) simulations to explore receptor flexibility, and performs a pharmacophore-based virtual screening over a set of MD conformations without requiring prior knowledge about known ligands or ligand-receptor structures for building the pharmacophores. The results from the different receptor conformations are combined using a "voting" approach, where a vote is given to each molecule that matches at least one pharmacophore from each MD conformation. Contrarily to other approaches that reduce the pharmacophore ensemble to some representative models and score according to the matching models or molecule conformers, the Flexi-pharma approach takes directly into account the receptor flexibility by scoring in regards to the receptor conformations. We tested the method over twenty systems, finding an enrichment of the dataset for 19 of them. Flexi-pharma is computationally efficient allowing for the screening of thousands of compounds in minutes on a single CPU core. Moreover, the ranking of molecules by vote is a general strategy that can be applied with any pharmacophore-filtering program.
计算机辅助策略可用于降低药物发现的成本并提高成功率。在这些策略中,基于药效团(代表靶标活性位点的电子和空间特征的集合)的方法对于在大型化合物库上实施非常有效。然而,传统的基于药效团的方法需要对活性化合物或配体-受体结构有一定的了解,并且只有少数方法考虑到了靶标灵活性。在这里,我们开发了一种基于药效团的虚拟筛选协议 Flexi-pharma,该协议克服了这些限制。该协议使用分子动力学(MD)模拟来探索受体的灵活性,并在一组 MD 构象上执行基于药效团的虚拟筛选,而无需事先了解已知配体或配体-受体结构来构建药效团。使用“投票”方法组合来自不同受体构象的结果,其中对每个分子赋予一票,该分子与每个 MD 构象的至少一个药效团匹配。与其他将药效团集合简化为一些代表性模型并根据匹配模型或分子构象进行评分的方法不同,Flexi-pharma 方法通过根据受体构象进行评分直接考虑受体的灵活性。我们在二十多个系统上测试了该方法,发现其中 19 个系统的数据得到了富集。Flexi-pharma 计算效率高,可在单个 CPU 内核上在几分钟内筛选数千种化合物。此外,根据投票对分子进行排名是一种通用策略,可与任何药效团过滤程序一起应用。