Sheng Ouwei, Zheng Jianhui, Ju Zhijin, Jin Chengbin, Wang Yao, Chen Mei, Nai Jianwei, Liu Tiefeng, Zhang Wenkui, Liu Yujing, Tao Xinyong
College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China.
Adv Mater. 2020 Aug;32(34):e2000223. doi: 10.1002/adma.202000223. Epub 2020 Jul 12.
The application of solid polymer electrolytes (SPEs) is still inherently limited by the unstable lithium (Li)/electrolyte interface, despite the advantages of security, flexibility, and workability of SPEs. Herein, the Li/electrolyte interface is modified by introducing Li S additive to harvest stable all-solid-state lithium metal batteries (LMBs). Cryo-transmission electron microscopy (cryo-TEM) results demonstrate a mosaic interface between poly(ethylene oxide) (PEO) electrolytes and Li metal anodes, in which abundant crystalline grains of Li, Li O, LiOH, and Li CO are randomly distributed. Besides, cryo-TEM visualization, combined with molecular dynamics simulations, reveals that the introduction of Li S accelerates the decomposition of N(CF SO ) and consequently promotes the formation of abundant LiF nanocrystals in the Li/PEO interface. The generated LiF is further verified to inhibit the breakage of CO bonds in the polymer chains and prevents the continuous interface reaction between Li and PEO. Therefore, the all-solid-state LMBs with the LiF-enriched interface exhibit improved cycling capability and stability in a cell configuration with an ultralong lifespan over 1800 h. This work is believed to open up a new avenue for rational design of high-performance all-solid-state LMBs.
尽管固态聚合物电解质(SPEs)具有安全性、柔韧性和可加工性等优点,但其应用仍受到锂(Li)/电解质界面不稳定的固有限制。在此,通过引入Li S添加剂来修饰Li/电解质界面,以获得稳定的全固态锂金属电池(LMBs)。低温透射电子显微镜(cryo-TEM)结果表明,聚环氧乙烷(PEO)电解质与锂金属阳极之间存在镶嵌界面,其中Li、Li O、LiOH和Li CO的大量晶粒随机分布。此外,cryo-TEM可视化与分子动力学模拟相结合,揭示了Li S的引入加速了N(CF SO) 的分解,从而促进了Li/PEO界面中大量LiF纳米晶体的形成。进一步证实,生成的LiF可抑制聚合物链中CO键的断裂,并防止Li与PEO之间的持续界面反应。因此,具有富LiF界面的全固态LMBs在电池配置中表现出改善的循环能力和稳定性,超长寿命超过1800小时。这项工作有望为高性能全固态LMBs的合理设计开辟一条新途径。