Suppr超能文献

胶体颗粒在微通道壁上的沉积,适用于吸引和排斥表面电位的情况。

Colloidal particle deposition on microchannel walls, for attractive and repulsive surface potentials.

作者信息

Porto Santos Tatiana, Cunha Rosiane Lopes, Tabeling Patrick, Cejas Cesare M

机构信息

Department of Food Engineering, Faculty of Food Engineering, University of Campinas, Rua Monteiro Lobato, 80-CEP 13083-862 Campinas, Brazil.

出版信息

Phys Chem Chem Phys. 2020 Aug 14;22(30):17236-17246. doi: 10.1039/d0cp01999b. Epub 2020 Jul 20.

Abstract

Surface interactions are an interplay of van der Waals adhesion forces with electrostatic charges. In colloidal deposition, at low ionic strengths, the Debye layer is sufficiently large to prevent particles from approaching the surface. It is only with the addition of higher salt concentrations, typically above 0.1 M, that surface charges are screened for interactions to take place via van der Waals-adhesion forces. This is true for repulsive charges, when both surfaces have similar charges and signs of the zeta potential are the same. However, with attractive charges, where zeta potential signs are opposite, the result is also opposite. By combining microfluidic experiments, theory, and numerical simulations, results show that when charges are attractive, particle deposition instead increases at low ionic strengths (at greater Debye lengths), at rates controlled by van der Waals forces but assisted by electrostatic forces. We propose a mechanism where particles approach the wall, mobilized by electrostatic attraction, up to a distance where van der Waals forces come into play, collecting the particles at the wall, which electrostatic forces alone are unable to achieve, owing to hindered diffusion. The present work thus allows us to understand the different mechanisms that govern deposition in the case where surface charges are opposite.

摘要

表面相互作用是范德华粘附力与静电荷之间的相互作用。在胶体沉积中,在低离子强度下,德拜层足够大,可防止颗粒接近表面。只有加入较高盐浓度(通常高于0.1M)时,表面电荷才会被屏蔽,从而通过范德华粘附力发生相互作用。对于排斥电荷来说,当两个表面具有相似电荷且zeta电位的符号相同时,情况就是如此。然而,对于吸引电荷,即zeta电位符号相反时,结果则相反。通过结合微流体实验、理论和数值模拟,结果表明,当电荷为吸引性时,颗粒沉积在低离子强度下(在更大的德拜长度处)反而会增加,其速率由范德华力控制,但受静电力辅助。我们提出了一种机制,即颗粒在静电力吸引作用下接近壁面,直至范德华力开始起作用的距离,在壁面处收集颗粒,而仅靠静电力由于扩散受阻无法实现这一点。因此,本研究使我们能够理解在表面电荷相反的情况下控制沉积的不同机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验