Suppr超能文献

植物功能基因组学:微阵列数据库及数据挖掘中的机遇

Plant functional genomics: opportunities in microarray databases and data mining.

作者信息

Kennedy Gavin C, Wilson Iain W

机构信息

CSIRO Mathematical and Information Sciences, GPO Box 664, Canberra, ACT 2601, Australia. Corresponding author; email:

CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia.

出版信息

Funct Plant Biol. 2004 May;31(4):295-314. doi: 10.1071/FP03216.

Abstract

High-throughput gene expression profiling using microarrays has given plant biologists a powerful new technology to discover gene function and understand cellular processes. Bioinformatics has rapidly developed to deliver the tools necessary to interpret this gene expression data, but opportunities to further exploit the mass of data from hundreds of experiments are becoming dependent upon the use of sophisticated database repositories. Data mining of these resources will allow plant biologists to compare and link expression profiles and experimental factors to uncover functions and processes that would not normally be visible from analysing a small set of microarray experiments. This in-silico analysis will become critical when designing new experiments and interpreting new results. Consequently microarray databases and their ongoing development are now as important to plant functional genomics as the initial microarray data capture and analysis tools. In order for plant biologists to grasp these new opportunities, an appreciation of microarray database technology and future developments in biological data integration is required. The challenge for plant functional genomics is to embrace these new technologies lest the opportunities for significant discoveries be lost.

摘要

利用微阵列进行的高通量基因表达谱分析为植物生物学家提供了一种强大的新技术,用于发现基因功能和理解细胞过程。生物信息学迅速发展,提供了解释这些基因表达数据所需的工具,但进一步利用来自数百个实验的大量数据的机会正越来越依赖于使用复杂的数据库存储库。对这些资源进行数据挖掘将使植物生物学家能够比较和关联表达谱与实验因素,以揭示从分析少量微阵列实验中通常无法看到的功能和过程。这种计算机模拟分析在设计新实验和解释新结果时将变得至关重要。因此,微阵列数据库及其持续发展对于植物功能基因组学来说,现在与最初的微阵列数据捕获和分析工具同样重要。为了让植物生物学家抓住这些新机会,需要了解微阵列数据库技术以及生物数据整合的未来发展。植物功能基因组学面临的挑战是接受这些新技术,以免错失重大发现的机会。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验