Suppr超能文献

基于卡尔曼方法的旋转直升机叶片状态与力估计

State and Force Estimation on a Rotating Helicopter Blade through a Kalman-Based Approach.

作者信息

Cumbo Roberta, Tamarozzi Tommaso, Jiranek Pavel, Desmet Wim, Masarati Pierangelo

机构信息

Siemens Digital Industries Software, Interleuvenlaan 68, 3001 Leuven, Belgium.

KU Leuven, Department of Mechanical Engineering, Celestijnenlaan 300 B, 3001 Heverlee, Belgium.

出版信息

Sensors (Basel). 2020 Jul 28;20(15):4196. doi: 10.3390/s20154196.

Abstract

The interaction between the rotating blades and the external fluid in non-axial flow conditions is the main source of vibratory loads on the main rotor of helicopters. The knowledge or prediction of the produced aerodynamic loads and of the dynamic behavior of the components could represent an advantage in preventing failures of the entire rotorcraft. Some techniques have been explored in the literature, but in this field of application, high accuracy can be reached if a large amount of sensor data and/or a high-fidelity numerical model is available. This paper applies the Kalman filtering technique to rotor load estimation. The nature of the filter allows the usage of a minimum set of sensors. The compensation of a low-fidelity model is also possible by accounting for sensors and model uncertainties. The efficiency of the filter for state and load estimation on a rotating blade is tested in this contribution, considering two different sources of uncertainties on a coupled multibody-aerodynamic model. Numerical results show an accurate state reconstruction with respect to the selected sensor layout. The aerodynamic loads are accurately evaluated in post-processing.

摘要

在非轴向流动条件下,旋转叶片与外部流体之间的相互作用是直升机主旋翼上振动载荷的主要来源。了解或预测所产生的气动载荷以及部件的动态行为,对于防止整个旋翼机出现故障可能具有优势。文献中已经探索了一些技术,但在这个应用领域中,如果有大量传感器数据和/或高保真数值模型,就可以实现高精度。本文将卡尔曼滤波技术应用于旋翼载荷估计。该滤波器的特性允许使用最少数量的传感器。通过考虑传感器和模型的不确定性,也可以对低保真模型进行补偿。在本文中,考虑耦合多体-气动模型上的两种不同不确定性来源,测试了该滤波器对旋转叶片状态和载荷估计的效率。数值结果表明,相对于所选的传感器布局,状态重建准确。在后处理中对气动载荷进行了准确评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f0f5/7435761/c5821c5a1a13/sensors-20-04196-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验