Suppr超能文献

由双轴各向同性介质界面引导的两种狄亚科诺夫 - 沃伊特表面波。

Two Dyakonov-Voigt surface waves guided by a biaxial-isotropic dielectric interface.

作者信息

Zhou Chenzhang, Mackay Tom G, Lakhtakia Akhlesh

机构信息

NanoMM, Nanoengineered Metamaterials Group, Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA, 16802-6812, USA.

School of Mathematics and Maxwell Institute for Mathematical Sciences, University of Edinburgh, Edinburgh, EH9 3FD, UK.

出版信息

Sci Rep. 2020 Jul 30;10(1):12894. doi: 10.1038/s41598-020-69727-z.

Abstract

Electromagnetic surface waves guided by the planar interface of an orthorhombic dielectric material and an isotropic dielectric material were analyzed theoretically and numerically. Both naturally occurring minerals (crocoite, tellurite, and cerussite) and engineered materials were considered as the orthorhombic partnering material. In addition to conventional Dyakonov surface waves, the analysis revealed that as many as two Dyakonov-Voigt surface waves can propagate in each quadrant of the interface plane, depending upon the birefringence of the orthorhombic partnering material. The coexistence of two Dyakonov-Voigt surface waves marks a fundamental departure from the corresponding case involving the planar interface of a uniaxial dielectric material and an isotropic dielectric material for which only one Dyakonov-Voigt surface wave is possible. The two Dyakonov-Voigt surface waves propagate in different directions in each quadrant of the interface plane, with different relative phase speeds and different penetration depths. Furthermore, the localization characteristics of the two Dyakonov-Voigt surface waves at the planar interface are quite different: the Dyakonov-Voigt surface wave with the higher relative phase speed is much less tightly localized at the interface in the isotropic dielectric partnering material.

摘要

对由正交晶系介电材料和各向同性介电材料的平面界面所引导的电磁表面波进行了理论和数值分析。天然矿物(铬酸铅矿、亚碲酸盐和白铅矿)以及工程材料都被视为正交晶系的配对材料。除了传统的戴亚科诺夫表面波外,分析还表明,根据正交晶系配对材料的双折射情况,在界面平面的每个象限中最多可有两个戴亚科诺夫 - 沃伊特表面波传播。两个戴亚科诺夫 - 沃伊特表面波的共存标志着与涉及单轴介电材料和各向同性介电材料平面界面的相应情况有根本不同,在后一种情况下只能有一个戴亚科诺夫 - 沃伊特表面波。两个戴亚科诺夫 - 沃伊特表面波在界面平面的每个象限中沿不同方向传播,具有不同的相对相速度和不同的穿透深度。此外,两个戴亚科诺夫 - 沃伊特表面波在平面界面处的局域化特性也大不相同:相对相速度较高的戴亚科诺夫 - 沃伊特表面波在各向同性介电配对材料中在界面处的局域化程度要低得多。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a6f0/7393386/c6e189603b44/41598_2020_69727_Fig1_HTML.jpg

相似文献

1
Two Dyakonov-Voigt surface waves guided by a biaxial-isotropic dielectric interface.
Sci Rep. 2020 Jul 30;10(1):12894. doi: 10.1038/s41598-020-69727-z.
2
Dyakonov-Voigt surface waves.
Proc Math Phys Eng Sci. 2019 Aug;475(2228):20190317. doi: 10.1098/rspa.2019.0317. Epub 2019 Aug 28.
3
Dyakonov hybrid surface waves at the isotropic-biaxial media interface.
J Opt Soc Am A Opt Image Sci Vis. 2015 May 1;32(5):782-9. doi: 10.1364/JOSAA.32.000782.
4
Analysis of Dyakonov surface waves existing at the interface of an isotropic medium and a conductor-backed uniaxial slab.
J Opt Soc Am A Opt Image Sci Vis. 2014 Sep 1;31(9):1923-30. doi: 10.1364/JOSAA.31.001923.
5
Thermally tunable Dyakonov surface waves in semiconductor nanowire metamaterials.
Sci Rep. 2023 Jul 31;13(1):12353. doi: 10.1038/s41598-023-39676-4.
6
Dyakonov-Tamm wave guided by a twist defect in a structurally chiral material.
J Opt Soc Am A Opt Image Sci Vis. 2009 Jul;26(7):1615-21. doi: 10.1364/josaa.26.001615.
7
Observation of the Dyakonov-Tamm wave.
Phys Rev Lett. 2013 Dec 13;111(24):243902. doi: 10.1103/PhysRevLett.111.243902. Epub 2013 Dec 9.
9
Terahertz Dyakonov surface waves in plasma metamaterials.
Opt Lett. 2018 Feb 1;43(3):519-522. doi: 10.1364/OL.43.000519.
10
Lossless directional guiding of light in dielectric nanosheets using Dyakonov surface waves.
Nat Nanotechnol. 2014 Jun;9(6):419-24. doi: 10.1038/nnano.2014.90. Epub 2014 May 25.

引用本文的文献

1
Dyakonov surface waves in dielectric crystals with negative anisotropy.
Nanophotonics. 2024 May 9;13(16):3005-3015. doi: 10.1515/nanoph-2024-0161. eCollection 2024 Jul.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验