Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China.
Key Laboratory of Eco-Environment of Three Gorges Region, Ministry of Education, Chongqing University, Chongqing 400044, China.
Water Res. 2020 Oct 15;185:116233. doi: 10.1016/j.watres.2020.116233. Epub 2020 Jul 24.
The impoundment of dammed rivers accelerates phytoplankton succession from river-dominated to lake-dominated species. Little is known about the role of phytoplankton succession in methane (CH) production. In this study, we performed a 61-day microcosm investigation to simulate the collapse processes of Cyclotella meneghiniana (river-dominated algae) and Chlorella pyrenoidosa and Microcystis aeruginosa (lake-dominated algae). The results suggested that different methanogenic conditions were induced by the collapse of river-and lake-dominated algae. The rapid settlement of C. meneghiniana induced aerobic conditions in the water that inhibited anaerobic CH production and intensified CH oxidation as a result of an increase in pmoA. However, the decomposition of C. pyrenoidosa and M. aeruginosa depleted dissolved oxygen and provided abundant labile organic matter, which jointly elevated mcrA and the mcrA/pmoA ratio. Under this condition, anaerobic CH production was the dominant pathway for the mineralization of algae-derived carbon. Finally, the CH produced per unit of particulate total carbon (identified as the carbon content of the algal biomass) by C. pyrenoidosa and M. aeruginosa was 16.29-fold and 8.56-fold higher, respectively, than that produced by C. meneghiniana. These observations provided evidence that lake-dominated algae played a more vital role in CH production than river-dominated algae when algal succession occurred. This discovery might be a new and vital, yet largely underestimated CH emission pathway in river-reservoir systems, that should be considered when evaluating the effect of hydraulic projects on greenhouse gas emissions.
水坝蓄水加速了从河流主导型向湖泊主导型浮游植物演替。关于浮游植物演替在甲烷(CH)产生中的作用知之甚少。在这项研究中,我们进行了 61 天的微宇宙调查,模拟了Cyclotella meneghiniana(河流主导藻类)和 Chlorella pyrenoidosa 和 Microcystis aeruginosa(湖泊主导藻类)的崩溃过程。结果表明,河流和湖泊主导藻类的崩溃导致不同的产甲烷条件。C. meneghiniana 的快速沉降导致水中有氧条件,抑制了厌氧 CH 产生,并由于 pmoA 的增加而加剧了 CH 氧化。然而,C. pyrenoidosa 和 M. aeruginosa 的分解耗尽了溶解氧,并提供了丰富的易位有机物质,这共同提高了 mcrA 和 mcrA/pmoA 比值。在这种条件下,厌氧 CH 产生是藻类衍生碳矿化的主要途径。最后,C. pyrenoidosa 和 M. aeruginosa 产生的单位颗粒总碳(被认为是藻类生物量的碳含量)中的 CH 分别比 C. meneghiniana 高 16.29 倍和 8.56 倍。这些观察结果表明,当藻类演替发生时,湖泊主导藻类在 CH 产生中比河流主导藻类发挥更重要的作用。这一发现可能是河流水库系统中一个新的、重要的、但在很大程度上被低估的 CH 排放途径,在评估水力工程对温室气体排放的影响时应该考虑到这一点。