Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
Rongxiang Xu Center for Regenerative Life Science, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin, China.
J Am Soc Nephrol. 2020 Oct;31(10):2292-2311. doi: 10.1681/ASN.2019111160. Epub 2020 Aug 7.
Progressive fibrosis is the underlying pathophysiological process of CKD, and targeted prevention or reversal of the profibrotic cell phenotype is an important goal in developing therapeutics for CKD. Nanoparticles offer new ways to deliver antifibrotic therapies to damaged tissues and resident cells to limit manifestation of the profibrotic phenotype.
We focused on delivering plasmid DNA expressing bone morphogenetic protein 7 (BMP7) or hepatocyte growth factor (HGF)-NK1 (HGF/NK1) by encapsulation within chitosan nanoparticles coated with hyaluronan, to safely administer multifunctional nanoparticles containing the plasmid DNA to the kidneys for localized and sustained expression of antifibrotic factors. We characterized and evaluated nanoparticles for biocompatibility and antifibrotic function. To assess antifibrotic activity , we used noninvasive delivery to unilateral ureteral obstruction mouse models of CKD.
Synthesis of hyaluronan-coated chitosan nanoparticles containing plasmid DNA expressing either BMP7 or NGF/NKI resulted in consistently sized nanoparticles, which-following endocytosis driven by CD44 cells-promoted cellular growth and inhibited fibrotic gene expression . Intravenous tail injection of these nanoparticles resulted in approximately 40%-45% of gene uptake in kidneys . The nanoparticles attenuated the development of fibrosis and rescued renal function in unilateral ureteral obstruction mouse models of CKD. Gene delivery of reversed the progression of fibrosis and regenerated tubules, whereas delivery of halted CKD progression by eliminating collagen fiber deposition.
Nanoparticle delivery of conveyed potent antifibrotic and proregenerative effects. Overall, this research provided the proof of concept on which to base future investigations for enhanced targeting and transfection of therapeutic genes to kidney tissues, and an avenue toward treatment of CKD.
进行性纤维化是 CKD 的潜在病理生理过程,靶向预防或逆转致纤维化细胞表型是开发 CKD 治疗方法的重要目标。纳米颗粒为将抗纤维化疗法递送至受损组织和驻留细胞提供了新方法,以限制致纤维化表型的表现。
我们专注于通过封装在透明质酸涂层的壳聚糖纳米颗粒内来递送电穿孔表达骨形态发生蛋白 7(BMP7)或肝细胞生长因子(HGF)-NK1(HGF/NK1)的质粒 DNA,以安全地将含有质粒 DNA 的多功能纳米颗粒施用于肾脏,用于局部和持续表达抗纤维化因子。我们对纳米颗粒进行了表征和评估,以确定其生物相容性和抗纤维化功能。为了评估抗纤维化活性,我们使用非侵入性递送方法,将单侧输尿管梗阻的 CKD 小鼠模型作为研究对象。
合成含有表达 BMP7 或 NGF/NKI 的质粒 DNA 的透明质酸涂层壳聚糖纳米颗粒,可得到大小一致的纳米颗粒,这些纳米颗粒通过 CD44 细胞驱动的内吞作用,促进细胞生长并抑制纤维化基因表达。经尾静脉注射这些纳米颗粒后,约有 40%-45%的基因被肾脏摄取。这些纳米颗粒可减轻单侧输尿管梗阻的 CKD 小鼠模型中纤维化的发展并恢复肾功能。基因传递可逆转纤维化的进展并再生小管,而传递 则通过消除胶原纤维沉积来阻止 CKD 的进展。
纳米颗粒递送 可传递强大的抗纤维化和促再生作用。总体而言,这项研究为基于增强治疗基因向肾脏组织的靶向性和转染的进一步研究提供了概念验证,并为 CKD 的治疗提供了一种途径。