Chuntonov Lev, Rubtsov Igor V
Schulich Faculty of Chemistry and Solid State Institute, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, USA.
J Chem Phys. 2020 Aug 7;153(5):050902. doi: 10.1063/5.0013956.
Development of noble metal nanostructure substrates that provide strong near-field enhancements enables applications of linear and nonlinear infrared (IR) spectroscopies to study minute sample quantities, such as nanometer thick films and molecular monolayers. Large near-field enhancements of the electric fields used for spectroscopic interrogation of molecules at the nanostructure surface result in enhancement of the spectroscopic signatures. This enhancement scales with the nonlinear order of the method, providing particularly large signal gains for third- and fifth-order IR methods, reaching 10 and 10 raw enhancement factors, not adjusted to the amount of interrogated sample. In this perspective, we overview the advances in the development of nano-arrays of antenna-like nanostructures for mid-IR measurements and illustrate their use in linear and especially nonlinear two-dimensional IR approaches. We discuss how studies of the interaction mechanisms between light, plasmonic antennas, and molecular excitations benefit from the nonlinear two-dimensional time-resolved methods, which involve high-order scaling of the signal with the excitation field, high sensitivity to signal localization, and coherence of the excitation over a broad bandwidth. On the other hand, we demonstrate how studies of molecular structure and ultrafast dynamics by these advanced spectroscopic methods benefit from surface enhancement of signals by plasmonic antennas.
能够提供强大近场增强的贵金属纳米结构基底的开发,使得线性和非线性红外(IR)光谱学可用于研究微量样品,如纳米厚膜和分子单层。用于在纳米结构表面对分子进行光谱探测的电场的大近场增强导致光谱特征的增强。这种增强与方法的非线性阶数成比例,对于三阶和五阶红外方法提供特别大的信号增益,达到10和10的原始增强因子,且未针对被探测样品的量进行调整。从这个角度出发,我们概述了用于中红外测量的天线状纳米结构纳米阵列开发方面的进展,并说明了它们在线性尤其是非线性二维红外方法中的应用。我们讨论了光、等离子体天线和分子激发之间相互作用机制的研究如何受益于非线性二维时间分辨方法,该方法涉及信号与激发场的高阶缩放、对信号定位的高灵敏度以及宽频带上激发的相干性。另一方面,我们展示了通过这些先进光谱方法对分子结构和超快动力学的研究如何受益于等离子体天线对信号的表面增强。