Zhong Yuxue, Cao Xueying, Liu Ying, Cui Liang, Liu Jingquan
College of Material Science and Engineering, Institute for Graphene Applied Technology Innovation, Qingdao University, Qingdao 266071, Shandong, China.
College of Material Science and Engineering, Linyi University, Linyi 276000 Shandong, China.
J Colloid Interface Sci. 2021 Jan 1;581(Pt A):11-20. doi: 10.1016/j.jcis.2020.07.124. Epub 2020 Jul 28.
In this work, for the first time we are reporting the development of a kind of high rate and long cycle life electrode composed of nickel cobalt manganese ternary carbonate hydroxide (NiCoMn-CH) ultrathin nanoflakes coated on Co-CH nanowire arrays (NWAs), which are directly generated on a nickel foam (NF) support. The hierarchical heterostructures are synthesized via a scalable two step solvothermal strategy without any adscititious surfactant and binder. The smart combination of Co-CH and NiCoMn-CH nanostructures in the nanowire arrays shows significant synergistic effect on the enhancement of the electrochemical performance of the as-fabricated supercapacitors. The as-obtained electrode exhibits excellent conductivity and high specific surface area, resulting in an unprecedented high specific capacitance (up to 3224F g at 1 A g in a three-electrode system) and an ultralong cycling stability (92.4% retention after 6000 successive charge-discharge cycles 5 A g). Meanwhile, an asymmetric supercapacitor device assembled of the Co-CH@NiCoMn-CH hierarchical nanostructures as positive electrode and activated carbon (AC) as negative electrode delivers good energy density of 20.31 W h kg at the power density of 748.46 W kg in the operation window 0-1.5 V. This methodology could be generalized to the design of other novel structured nanomaterials for energy storage devices and other applications.
在这项工作中,我们首次报道了一种高倍率和长循环寿命电极的开发,该电极由涂覆在钴 - 碳酸氢氧化合物纳米线阵列(NWAs)上的镍钴锰三元碳酸氢氧化合物(NiCoMn-CH)超薄纳米片组成,这些纳米线阵列直接生长在泡沫镍(NF)载体上。通过可扩展的两步溶剂热策略合成了这种分级异质结构,无需任何外加表面活性剂和粘合剂。纳米线阵列中Co-CH和NiCoMn-CH纳米结构的巧妙组合对所制备超级电容器的电化学性能增强显示出显著的协同效应。所获得的电极表现出优异的导电性和高比表面积,导致在三电极系统中1 A g时具有前所未有的高比电容(高达3224 F g)和超长的循环稳定性(在5 A g下连续6000次充放电循环后保留92.4%)。同时,由Co-CH@NiCoMn-CH分级纳米结构作为正极和活性炭(AC)作为负极组装的不对称超级电容器装置在0 - 1.5 V的工作窗口中,在748.46 W kg的功率密度下提供20.31 W h kg的良好能量密度。这种方法可以推广到用于储能装置和其他应用的其他新型结构纳米材料的设计中。