Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, Sofia 1164, Bulgaria.
Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, Sofia 1164, Bulgaria.
J Colloid Interface Sci. 2021 Jan 1;581(Pt A):262-275. doi: 10.1016/j.jcis.2020.07.059. Epub 2020 Jul 25.
To correctly predict the aggregation number and size of wormlike micelles from ionic surfactants, the molecular-thermodynamic theory has to calculate the free energy per molecule in the micelle with accuracy better than 0.01 kT, which is a serious challenge. The problem could be solved if the effects of mutual confinement of micelle counterion atmospheres, as well as the effects of counterion binding, surface curvature and ionic interactions in the electric double layer (EDL), are accurately described.
The electric field is calculated using an appropriate cell model, which takes into account the aforementioned effects. Expressions for the activity coefficients have been used, which vary across the EDL and describe the electrostatic, hard sphere, and specific interactions between the ions. New approach for fast numerical calculation of the electrostatic free energy is developed.
The numerical results demonstrate the variation of quantities characterizing the EDL of cylindrical and spherical micelles with the rise of electrolyte concentration. The effect of activity coefficients leads to higher values of the free energy per surfactant molecule in the micelle as compared with the case of neglected ionic interactions. The results are essential for the correct prediction of the size of wormlike micelles from ionic surfactants. This study can be extended to mixed micelles of ionic and nonionic surfactants for interpretation of the observed synergistic effects.
为了正确预测离子型表面活性剂形成的蠕虫状胶束的聚集数和大小,分子热力学理论必须以优于 0.01 kT 的精度计算胶束中每个分子的自由能,这是一个严峻的挑战。如果能够准确描述胶束抗衡离子气氛的相互限制作用、抗衡离子结合、表面曲率以及双电层(EDL)中的离子相互作用的影响,这个问题就可以得到解决。
使用适当的单元模型计算电场,该模型考虑了上述影响。我们使用了在 EDL 中变化的活度系数表达式,这些表达式描述了离子的静电、硬球和特定相互作用。开发了一种新的快速数值计算静电自由能的方法。
数值结果表明,随着电解质浓度的升高,表征圆柱形和球形胶束 EDL 的各种量发生变化。与忽略离子相互作用的情况相比,活度系数的影响导致胶束中每个表面活性剂分子的自由能更高。这些结果对于正确预测离子型表面活性剂形成的蠕虫状胶束的大小至关重要。这项研究可以扩展到离子型和非离子型表面活性剂的混合胶束,以解释观察到的协同效应。