Suppr超能文献

通过在聚乙二醇-肽水凝胶支架中对人间充质干细胞进行重新工程来表征细胞周区域的动态流变学。

Characterizing the dynamic rheology in the pericellular region by human mesenchymal stem cell re-engineering in PEG-peptide hydrogel scaffolds.

作者信息

Daviran Maryam, Schultz Kelly M

机构信息

Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Dr., Iacocca Hall, Bethlehem, PA 18015, USA.

出版信息

Rheol Acta. 2019 Aug;58(8):421-437. doi: 10.1007/s00397-019-01142-2. Epub 2019 Apr 25.

Abstract

During wound healing, human mesenchymal stem cells (hMSCs) migrate to injuries to regulate inflammation and coordinate tissue regeneration. To enable migration, hMSCs re-engineer the extracellular matrix rheology. Our work determines the correlation between cell engineered rheology and motility. We encapsulate hMSCs in a cell-degradable peptide-polymeric hydrogel and characterize the change in rheological properties in the pericellular region using multiple particle tracking microrheology. Previous studies determined that pericellular rheology is correlated with motility. Additionally, hMSCs re-engineer their microenvironment by regulating cell-secreted enzyme, matrix metallopro-teinases (MMPs), activity by also secreting their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). We independently inhibit TIMPs and measure two different degradation profiles, reaction-diffusion and reverse reaction-diffusion. These profiles are correlated with cell spreading, speed and motility type. We model scaffold degradation using Michaelis-Menten kinetics, finding a decrease in kinetics between joint and independent TIMP inhibition. hMSCs ability to regulate microenvironmental remodeling and motility could be exploited in design of new materials that deliver hMSCs to wounds to enhance healing.

摘要

在伤口愈合过程中,人间充质干细胞(hMSCs)迁移至损伤部位以调节炎症并协调组织再生。为实现迁移,hMSCs会重塑细胞外基质的流变学特性。我们的研究确定了细胞工程化流变学与运动性之间的相关性。我们将hMSCs封装在可被细胞降解的肽 - 聚合物水凝胶中,并使用多粒子追踪微流变学来表征细胞周围区域流变学特性的变化。先前的研究表明,细胞周围流变学与运动性相关。此外,hMSCs还通过调节细胞分泌的酶——基质金属蛋白酶(MMPs)的活性来重塑其微环境,同时它们也会分泌MMPs的抑制剂——金属蛋白酶组织抑制剂(TIMPs)。我们分别抑制TIMPs,并测量两种不同的降解模式,即反应 - 扩散和反向反应 - 扩散。这些模式与细胞铺展、速度和运动类型相关。我们使用米氏动力学对支架降解进行建模,发现联合抑制和单独抑制TIMPs时动力学有所下降。hMSCs调节微环境重塑和运动性的能力可用于设计将hMSCs输送到伤口以促进愈合的新型材料。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9739/7413226/36a29e3f78db/nihms-1027851-f0001.jpg

相似文献

8
Cell-Material Interactions in Covalent Adaptable Thioester Hydrogels.共价适应性硫酯水凝胶中的细胞-材料相互作用。
ACS Biomater Sci Eng. 2024 Sep 9;10(9):5701-5713. doi: 10.1021/acsbiomaterials.4c00884. Epub 2024 Aug 22.

引用本文的文献

本文引用的文献

7
Advances in the microrheology of complex fluids.复杂流体的微流变学进展。
Rep Prog Phys. 2016 Jul;79(7):074601. doi: 10.1088/0034-4885/79/7/074601. Epub 2016 Jun 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验