Daviran Maryam, Schultz Kelly M
Department of Chemical and Biomolecular Engineering, Lehigh University, 111 Research Dr., Iacocca Hall, Bethlehem, PA 18015, USA.
Rheol Acta. 2019 Aug;58(8):421-437. doi: 10.1007/s00397-019-01142-2. Epub 2019 Apr 25.
During wound healing, human mesenchymal stem cells (hMSCs) migrate to injuries to regulate inflammation and coordinate tissue regeneration. To enable migration, hMSCs re-engineer the extracellular matrix rheology. Our work determines the correlation between cell engineered rheology and motility. We encapsulate hMSCs in a cell-degradable peptide-polymeric hydrogel and characterize the change in rheological properties in the pericellular region using multiple particle tracking microrheology. Previous studies determined that pericellular rheology is correlated with motility. Additionally, hMSCs re-engineer their microenvironment by regulating cell-secreted enzyme, matrix metallopro-teinases (MMPs), activity by also secreting their inhibitors, tissue inhibitors of metalloproteinases (TIMPs). We independently inhibit TIMPs and measure two different degradation profiles, reaction-diffusion and reverse reaction-diffusion. These profiles are correlated with cell spreading, speed and motility type. We model scaffold degradation using Michaelis-Menten kinetics, finding a decrease in kinetics between joint and independent TIMP inhibition. hMSCs ability to regulate microenvironmental remodeling and motility could be exploited in design of new materials that deliver hMSCs to wounds to enhance healing.
在伤口愈合过程中,人间充质干细胞(hMSCs)迁移至损伤部位以调节炎症并协调组织再生。为实现迁移,hMSCs会重塑细胞外基质的流变学特性。我们的研究确定了细胞工程化流变学与运动性之间的相关性。我们将hMSCs封装在可被细胞降解的肽 - 聚合物水凝胶中,并使用多粒子追踪微流变学来表征细胞周围区域流变学特性的变化。先前的研究表明,细胞周围流变学与运动性相关。此外,hMSCs还通过调节细胞分泌的酶——基质金属蛋白酶(MMPs)的活性来重塑其微环境,同时它们也会分泌MMPs的抑制剂——金属蛋白酶组织抑制剂(TIMPs)。我们分别抑制TIMPs,并测量两种不同的降解模式,即反应 - 扩散和反向反应 - 扩散。这些模式与细胞铺展、速度和运动类型相关。我们使用米氏动力学对支架降解进行建模,发现联合抑制和单独抑制TIMPs时动力学有所下降。hMSCs调节微环境重塑和运动性的能力可用于设计将hMSCs输送到伤口以促进愈合的新型材料。