Suppr超能文献

基于计算机断层扫描的分叶征预测肺结节恶性肿瘤:荟萃分析。

Computed tomography-based spiculated sign for prediction of malignancy in lung nodules: A meta-analysis.

机构信息

Department of Radiology, Xuzhou Central Hospital, Xuzhou, China.

出版信息

Clin Respir J. 2020 Dec;14(12):1113-1121. doi: 10.1111/crj.13258. Epub 2020 Aug 27.

Abstract

BACKGROUND

Computed tomography (CT)-based spiculated sign is a risk factor for malignancy in patients with lung nodules (LNs). The present meta-analysis aimed to evaluate the diagnostic utility of CT-based spiculated sign as a means of differentiating between malignant and benign LNs.

METHODS

PubMed, Cochrane Library and Embase were reviewed from January 2000 to March 2020 for eligible studies. Stata v12.0 was used to conduct this meta-analysis.

RESULTS

We identified 19 retrospective studies for inclusion in this meta-analysis. These studies compiled data pertaining to 8549 LNs (5547 malignant and 3003 benign). Pooled sensitivity, specificity, positive likelihood ratio (PLR), negative likelihood ratio (NLR) and diagnostic odds ratios (DOR) were 0.51 (95% CI: 0.36-0.65), 0.84 (95% CI: 0.74-0.91), 3.15 (95% CI: 2.34-4.23), 0.59 (95% CI: 0.47-0.73) and 5.36 (95% CI: 3.93-7.31), respectively. The area under curve (AUC) was 0.76. Significant heterogeneity was detected among these studies with respect to sensitivity (I = 98.4%, P = .00), specificity (I = 95.8%, P = .00), PLR (I = 78.9%, P = .00), NLR (I = 99.3%, P = .00) and DOR (I = 100%, P = .00). A meta-regression analysis revealed that the country in which a study was conducted (China vs Not China) had a strong influence on reported sensitivity and specificity. No significant publication bias was detected via Deeks' funnel plot asymmetry test (P = .191).

CONCLUSIONS

CT-based spiculated sign can achieve moderate diagnostic performance as a means of differentiating between malignant and benign LNs.

摘要

背景

计算机断层扫描(CT)显示的分叶征是肺部结节(LN)患者恶性肿瘤的危险因素。本荟萃分析旨在评估 CT 显示的分叶征作为区分良恶性 LN 的诊断效用。

方法

从 2000 年 1 月至 2020 年 3 月,检索了 PubMed、Cochrane 图书馆和 Embase 中符合条件的研究。使用 Stata v12.0 进行了这项荟萃分析。

结果

我们共确定了 19 项符合纳入标准的回顾性研究,这些研究共汇总了 8549 个 LN(5547 个恶性和 3003 个良性)的数据。合并的敏感性、特异性、阳性似然比(PLR)、阴性似然比(NLR)和诊断比值比(DOR)分别为 0.51(95%可信区间:0.36-0.65)、0.84(95%可信区间:0.74-0.91)、3.15(95%可信区间:2.34-4.23)、0.59(95%可信区间:0.47-0.73)和 5.36(95%可信区间:3.93-7.31)。曲线下面积(AUC)为 0.76。这些研究的敏感性(I = 98.4%,P =.00)、特异性(I = 95.8%,P =.00)、PLR(I = 78.9%,P =.00)、NLR(I = 99.3%,P =.00)和 DOR(I = 100%,P =.00)均存在显著的异质性。通过 Deeks 漏斗图不对称检验发现,研究所在的国家(中国与非中国)对报告的敏感性和特异性有很大影响(P =.191)。

结论

CT 显示的分叶征作为区分良恶性 LN 的方法具有中等的诊断性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验