Suppr超能文献

利用机器学习和人工智能推动脊柱护理的个性化医疗方法。

Use of Machine Learning and Artificial Intelligence to Drive Personalized Medicine Approaches for Spine Care.

作者信息

Khan Omar, Badhiwala Jetan H, Grasso Giovanni, Fehlings Michael G

机构信息

Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.

Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada; Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.

出版信息

World Neurosurg. 2020 Aug;140:512-518. doi: 10.1016/j.wneu.2020.04.022.

Abstract

Personalized medicine is a new paradigm of healthcare in which interventions are based on individual patient characteristics rather than on "one-size-fits-all" guidelines. As epidemiological datasets continue to burgeon in size and complexity, powerful methods such as statistical machine learning and artificial intelligence (AI) become necessary to interpret and develop prognostic models from underlying data. Through such analysis, machine learning can be used to facilitate personalized medicine via its precise predictions. Additionally, other AI tools, such as natural language processing and computer vision, can play an instrumental part in personalizing the care provided to patients with spine disease. In the present report, we discuss the current strides made in incorporating AI into research on spine disease, especially traumatic spinal cord injury and degenerative spine disease. We describe studies using AI to build accurate prognostic models, extract important information from medical reports via natural language processing, and evaluate functional status in a granular manner using computer vision. Through a case illustration, we have demonstrated how these breakthroughs can facilitate an increased role for more personalized medicine and, thus, change the landscape of spine care.

摘要

个性化医疗是一种新的医疗保健模式,其中干预措施基于个体患者的特征,而不是“一刀切”的指导方针。随着流行病学数据集的规模和复杂性不断迅速增长,诸如统计机器学习和人工智能(AI)等强大方法对于从基础数据中解释和开发预后模型变得必不可少。通过这种分析,机器学习可通过其精确预测用于促进个性化医疗。此外,其他人工智能工具,如自然语言处理和计算机视觉,在为脊柱疾病患者提供个性化护理方面可发挥重要作用。在本报告中,我们讨论了在将人工智能纳入脊柱疾病研究,特别是创伤性脊髓损伤和退行性脊柱疾病研究方面目前取得的进展。我们描述了利用人工智能建立准确预后模型、通过自然语言处理从医学报告中提取重要信息以及使用计算机视觉以精细方式评估功能状态的研究。通过一个案例说明,我们展示了这些突破如何能够促进更个性化医疗发挥更大作用,从而改变脊柱护理的格局。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验