Pal Arun, Chand Santanu, Madden David G, Franz Douglas, Ritter Logan, Space Brian, Curtin Teresa, Chand Pal Shyam, Das Madhab C
Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Dr, Cambridge CB3 0AS, U.K.
ACS Appl Mater Interfaces. 2020 Sep 16;12(37):41177-41184. doi: 10.1021/acsami.0c07380. Epub 2020 Sep 1.
The stability of microporous metal-organic frameworks (MOFs) in moist environments must be taken into consideration for their practical implementations, which has been largely ignored thus far. Herein, we synthesized a new moisture-stable Zn-MOF, , , by utilizing a bent organic linker 4,4'-sulfonyldibenzoic acid (HSDB) containing a polar sulfone group (-SO) and a N, N-donor spacer () with a Brunauer-Emmett-Teller surface area of 216 m g. This material displays greater CO adsorption capacity over N and CH with high IAST selectivity, which is also validated by breakthrough experiments with longer breakthrough times for CO. Most importantly, the separation performance is largely unaffected in the presence of moisture of simulated flue gas stream. Temperature-programmed desorption (TPD) analysis shows the ease of the regeneration process, and the performance was verified for multiple cycles. In order to understand the structure-function relationship at the atomistic level, grand canonical Monte Carlo (GCMC) calculation was performed, indicating that the primary binding site for CO is between the sulfone moieties in . CO is attracted to the bonded structure (V-shape) of the sulfone moieties in a perpendicular fashion, where C is aligned with S, and the CO axis bisects the SO axis. Thus, the strategic approach to immobilize the polar sulfone moiety with a high number of inherent stronger M-N coordination and the absence of coordination unsaturation made this MOF potential toward practical CO separation applications.
在实际应用中,必须考虑微孔金属有机框架材料(MOF)在潮湿环境中的稳定性,而这一点在很大程度上迄今仍被忽视。在此,我们通过使用含有极性砜基(-SO)的弯曲有机连接体4,4'-磺酰基二苯甲酸(HSDB)和N,N供体间隔基合成了一种新型的耐湿Zn-MOF,其比表面积为216 m²/g。该材料对CO的吸附容量高于N₂和CH₄,具有较高的理想吸附溶液理论(IAST)选择性,这也通过CO具有更长穿透时间的穿透实验得到了验证。最重要的是,在模拟烟道气流中有水分存在的情况下,其分离性能基本不受影响。程序升温脱附(TPD)分析表明该再生过程容易进行,并且该性能在多个循环中得到了验证。为了在原子水平上理解结构-功能关系,进行了巨正则蒙特卡罗(GCMC)计算,结果表明CO的主要结合位点在[具体物质]中的砜基部分之间。CO以垂直方式被吸引到砜基部分的键合结构(V形)上,其中C与S对齐,并且CO轴将SO轴平分。因此,通过大量固有的更强M-N配位固定极性砜基部分且不存在配位不饱和的策略方法使得这种MOF在实际CO分离应用中具有潜力。