Suppr超能文献

用于RAS的整合生物物理药物发现中的核磁共振:过去、现在与未来。

NMR in integrated biophysical drug discovery for RAS: past, present, and future.

作者信息

Marshall Christopher B, KleinJan Fenneke, Gebregiworgis Teklab, Lee Ki-Young, Fang Zhenhao, Eves Ben J, Liu Ningdi F, Gasmi-Seabrook Geneviève M C, Enomoto Masahiro, Ikura Mitsuhiko

机构信息

Princess Margaret Cancer Centre, University Health Network, Toronto, ON, M5G 1L7, Canada.

Department of Medical Biophysics, University of Toronto, Toronto, ON, M5G 1L7, Canada.

出版信息

J Biomol NMR. 2020 Nov;74(10-11):531-554. doi: 10.1007/s10858-020-00338-6. Epub 2020 Aug 17.

Abstract

Mutations in RAS oncogenes occur in ~ 30% of human cancers, with KRAS being the most frequently altered isoform. RAS proteins comprise a conserved GTPase domain and a C-terminal lipid-modified tail that is unique to each isoform. The GTPase domain is a 'switch' that regulates multiple signaling cascades that drive cell growth and proliferation when activated by binding GTP, and the signal is terminated by GTP hydrolysis. Oncogenic RAS mutations disrupt the GTPase cycle, leading to accumulation of the activated GTP-bound state and promoting proliferation. RAS is a key target in oncology, however it lacks classic druggable pockets and has been extremely challenging to target. RAS signaling has thus been targeted indirectly, by harnessing key downstream effectors as well as upstream regulators, or disrupting the proper membrane localization required for signaling, by inhibiting either lipid modification or 'carrier' proteins. As a small (20 kDa) protein with multiple conformers in dynamic equilibrium, RAS is an excellent candidate for NMR-driven characterization and screening for direct inhibitors. Several molecules have been discovered that bind RAS and stabilize shallow pockets through conformational selection, and recent compounds have achieved substantial improvements in affinity. NMR-derived insight into targeting the RAS-membrane interface has revealed a new strategy to enhance the potency of small molecules, while another approach has been development of peptidyl inhibitors that bind through large interfaces rather than deep pockets. Remarkable progress has been made with mutation-specific covalent inhibitors that target the thiol of a G12C mutant, and these are now in clinical trials. Here we review the history of RAS inhibitor development and highlight the utility of NMR and integrated biophysical approaches in RAS drug discovery.

摘要

RAS致癌基因的突变发生在约30%的人类癌症中,其中KRAS是最常发生改变的异构体。RAS蛋白包含一个保守的GTP酶结构域和一个C末端脂质修饰尾巴,每种异构体都有其独特性。GTP酶结构域是一个“开关”,调节多个信号级联反应,当通过结合GTP被激活时驱动细胞生长和增殖,信号通过GTP水解终止。致癌性RAS突变破坏GTP酶循环,导致活化的GTP结合状态积累并促进增殖。RAS是肿瘤学中的一个关键靶点,然而它缺乏经典的可成药口袋,靶向极具挑战性。因此,RAS信号传导已通过利用关键的下游效应器以及上游调节因子进行间接靶向,或者通过抑制脂质修饰或“载体”蛋白来破坏信号传导所需的正确膜定位。作为一种具有多种处于动态平衡构象的小(20 kDa)蛋白,RAS是通过核磁共振驱动的表征和直接抑制剂筛选的优秀候选对象。已经发现了几种通过构象选择结合RAS并稳定浅口袋的分子,最近的化合物在亲和力方面有了显著提高。核磁共振对靶向RAS-膜界面的深入了解揭示了一种提高小分子效力的新策略,而另一种方法是开发通过大界面而非深口袋结合的肽基抑制剂。针对G12C突变体硫醇的突变特异性共价抑制剂取得了显著进展,目前这些抑制剂正在进行临床试验。在这里,我们回顾RAS抑制剂的开发历史,并强调核磁共振和综合生物物理方法在RAS药物发现中的作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验