Suppr超能文献

基于深度神经网络的热点预测。

Predicting Hot Spots Using a Deep Neural Network Approach.

机构信息

Center for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.

Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.

出版信息

Methods Mol Biol. 2021;2190:267-288. doi: 10.1007/978-1-0716-0826-5_13.

Abstract

Targeting protein-protein interactions is a challenge and crucial task of the drug discovery process. A good starting point for rational drug design is the identification of hot spots (HS) at protein-protein interfaces, typically conserved residues that contribute most significantly to the binding. In this chapter, we depict point-by-point an in-house pipeline used for HS prediction using only sequence-based features from the well-known SpotOn dataset of soluble proteins (Moreira et al., Sci Rep 7:8007, 2017), through the implementation of a deep neural network. The presented pipeline is divided into three steps: (1) feature extraction, (2) deep learning classification, and (3) model evaluation. We present all the available resources, including code snippets, the main dataset, and the free and open-source modules/packages necessary for full replication of the protocol. The users should be able to develop an HS prediction model with accuracy, precision, recall, and AUROC of 0.96, 0.93, 0.91, and 0.86, respectively.

摘要

靶向蛋白质-蛋白质相互作用是药物发现过程中的一个挑战和关键任务。合理药物设计的一个良好起点是识别蛋白质-蛋白质界面上的热点(HS),通常是对结合贡献最大的保守残基。在本章中,我们通过实现深度神经网络,仅使用来自著名的可溶性蛋白质 SpotOn 数据集(Moreira 等人,Sci Rep 7:8007, 2017)的基于序列的特征,逐点描述了一个内部用于 HS 预测的管道。提出的管道分为三个步骤:(1)特征提取,(2)深度学习分类,(3)模型评估。我们提供了所有可用的资源,包括代码片段、主要数据集以及复制该方案所需的免费和开源模块/包。用户应该能够开发出具有准确性、精度、召回率和 AUROC 分别为 0.96、0.93、0.91 和 0.86 的 HS 预测模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验