Suppr超能文献

从全天惯性运动记录预测婴儿发育结果。

Toward Predicting Infant Developmental Outcomes From Day-Long Inertial Motion Recordings.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2020 Oct;28(10):2305-2314. doi: 10.1109/TNSRE.2020.3016916. Epub 2020 Aug 17.

Abstract

As improvements in medicine lower infant mortality rates, more infants with neuromotor challenges survive past birth. The motor, social, and cognitive development of these infants are closely interrelated, and challenges in any of these areas can lead to developmental differences. Thus, analyzing one of these domains - the motion of young infants - can yield insights on developmental progress to help identify individuals who would benefit most from early interventions. In the presented data collection, we gathered day-long inertial motion recordings from N = 12 typically developing (TD) infants and N = 24 infants who were classified as at risk for developmental delays (AR) due to complications at or before birth. As a first research step, we used simple machine learning methods (decision trees, k-nearest neighbors, and support vector machines) to classify infants as TD or AR based on their movement recordings and demographic data. Our next aim was to predict future outcomes for the AR infants using the same simple classifiers trained from the same movement recordings and demographic data. We achieved a 94.4% overall accuracy in classifying infants as TD or AR, and an 89.5% overall accuracy predicting future outcomes for the AR infants. The addition of inertial data was much more important to producing accurate future predictions than identification of current status. This work is an important step toward helping stakeholders to monitor the developmental progress of AR infants and identify infants who may be at the greatest risk for ongoing developmental challenges.

摘要

随着医学的进步降低了婴儿死亡率,更多患有神经运动障碍的婴儿在出生后幸存下来。这些婴儿的运动、社会和认知发展密切相关,任何一个领域的挑战都可能导致发育差异。因此,分析这些领域之一——幼儿的运动——可以深入了解发育进展,帮助识别最需要早期干预的个体。在本次数据采集过程中,我们从 12 名正常发育(TD)婴儿和 24 名因出生前或出生时并发症而被归类为发育迟缓风险(AR)的婴儿中收集了一整天的惯性运动记录。作为第一步研究,我们使用简单的机器学习方法(决策树、k-最近邻和支持向量机)根据婴儿的运动记录和人口统计学数据对他们进行 TD 或 AR 的分类。我们的下一个目标是使用从相同运动记录和人口统计学数据中训练的相同简单分类器来预测 AR 婴儿的未来结果。我们在将婴儿分类为 TD 或 AR 方面的总体准确率达到了 94.4%,在预测 AR 婴儿的未来结果方面的总体准确率达到了 89.5%。与识别当前状态相比,惯性数据的添加对产生准确的未来预测更为重要。这项工作是帮助利益相关者监测 AR 婴儿发育进展并识别可能面临持续发育挑战的最大风险婴儿的重要一步。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验