Yamaguchi Yui, Aono Ryusei, Hayashi Eri, Kamata Keigo, Hara Michikazu
Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, Kanagawa 226-8503, Japan.
ACS Appl Mater Interfaces. 2020 Aug 12;12(32):36004-36013. doi: 10.1021/acsami.0c08043. Epub 2020 Jul 30.
Mesoporous β-MnO nanoparticles were synthesized by a template-free low-temperature crystallization of Mn precursors (low-crystallinity layer-type Mn oxide, -distorted H-birnessite) produced by the reaction of MnO and Mn. The Mn starting materials, pH of the reaction solution, and calcination temperatures significantly affect the crystal structure, surface area, porous structure, and morphology of the manganese oxides formed. The pH conditions during the precipitation of Mn precursors are important for controlling the morphology and porous structure of β-MnO. Nonrigid aggregates of platelike particles with slitlike pores (-- and -) were obtained from the combinations of NaMnO/MnSO and NaMnO/Mn(NO), respectively. On the other hand, spherelike particles with ink-bottle shaped pores (--) were formed in NaMnO/Mn(OAc) with pH adjustment (pH 0.8). The specific surface areas for --, -, and - were much higher than those for nonporous β-MnO nanorods synthesized using a typical hydrothermal method (--). On the other hand, -distorted H-birnessite precursors with a high interlayer metal cation (Na and K) content led to the formation of α-MnO with a 2 × 2 tunnel structure. These mesoporous β-MnO materials acted as effective heterogeneous catalysts for the aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) as a bioplastic monomer and for the transformation of aromatic alcohols to the corresponding aldehydes, where the catalytic activities of --, -, and - were approximately 1 order of magnitude higher than that of --. -- exhibited higher catalytic activity (especially for larger molecules) than the other β-MnO materials, and this is likely attributed to the nanometer-sized spaces.
介孔β-MnO纳米颗粒是通过MnO与Mn反应生成的Mn前驱体(低结晶度层状Mn氧化物,扭曲的水钠锰矿)的无模板低温结晶法合成的。Mn起始原料、反应溶液的pH值和煅烧温度显著影响所形成的锰氧化物的晶体结构、表面积、多孔结构和形态。Mn前驱体沉淀过程中的pH条件对于控制β-MnO的形态和多孔结构很重要。分别从NaMnO₄/MnSO₄和NaMnO₄/Mn(NO₃)₂的组合中获得了具有狭缝状孔(--和-)的板状颗粒的非刚性聚集体。另一方面,通过调节pH值(pH 0.8)在NaMnO₄/Mn(OAc)₂中形成了具有墨水瓶状孔(--)的球状颗粒。--、-和-的比表面积远高于使用典型水热法合成的无孔β-MnO纳米棒(--)。另一方面,具有高层间金属阳离子(Na和K)含量的扭曲水钠锰矿前驱体导致形成具有2×2隧道结构的α-MnO。这些介孔β-MnO材料作为有效的多相催化剂,用于将5-羟甲基糠醛(HMF)有氧氧化为作为生物塑料单体的2,5-呋喃二甲酸(FDCA),以及用于将芳香醇转化为相应的醛,其中--、-和-的催化活性比--高约1个数量级。--表现出比其他β-MnO材料更高的催化活性(特别是对于较大的分子),这可能归因于纳米尺寸的空间。