Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genoa, Italy.
Department of Informatics, Bioengineering, Robotics and System Engineering, University of Genoa, Via Opera Pia, 13, 16145 Genoa, Italy.
ACS Appl Mater Interfaces. 2020 Aug 26;12(34):37943-37956. doi: 10.1021/acsami.0c12202. Epub 2020 Aug 14.
Macrophage inflammation and maturation into foam cells, following the engulfment of oxidized low-density lipoproteins (oxLDL), are major hallmarks in the onset and progression of atherosclerosis. Yet, chronic treatments with anti-inflammatory agents, such as methotrexate (MTX), failed to modulate disease progression, possibly for the limited drug bioavailability and plaque deposition. Here, MTX-lipid conjugates, based on 1,2-distearoyl--glycero-3-phosphoethanolamine (DSPE), were integrated in the structure of spherical polymeric nanoparticles (MTX-SPNs) or intercalated in the lipid bilayer of liposomes (MTX-LIP). Although, both nanoparticles were colloidally stable with an average diameter of ∼200 nm, MTX-LIP exhibited a higher encapsulation efficiency (>70%) and slower release rate (∼50% at 10 h) compared to MTX-SPN. In primary bone marrow derived macrophages (BMDMs), MTX-LIP modulated the transcellular transport of oxLDL more efficiently than free MTX mostly by inducing a 2-fold overexpression of ABCA1 (regulating oxLDL efflux), while the effect on CD36 and SRA-1 (regulating oxLDL influx) was minimal. Furthermore, in BMDMs, MTX-LIP showed a stronger anti-inflammatory activity than free MTX, reducing the expression of IL-1β by 3-fold, IL-6 by 2-fold, and also moderately of TNF-α. In 28 days high-fat-diet-fed apoE mice, MTX-LIP reduced the mean plaque area by 2-fold and the hematic amounts of RANTES by half as compared to free MTX. These results would suggest that the nanoenhanced delivery to vascular plaques of the anti-inflammatory DSPE-MTX conjugate could effectively modulate the disease progression by halting monocytes' maturation and recruitment already at the onset of atherosclerosis.
巨噬细胞吞噬氧化型低密度脂蛋白(oxLDL)后发生炎症反应和泡沫细胞转化,是动脉粥样硬化发生和进展的主要标志。然而,采用甲氨蝶呤(MTX)等抗炎药物进行慢性治疗未能调节疾病进展,这可能是由于药物生物利用度有限和斑块沉积所致。在此,我们将基于 1,2-二硬脂酰-sn-甘油-3-磷酸乙醇胺(DSPE)的 MTX 脂质缀合物整合到球形聚合物纳米颗粒(MTX-SPN)的结构中,或插入脂质体的脂质双层中(MTX-LIP)。虽然两种纳米颗粒都具有胶体稳定性,平均直径约为 200nm,但 MTX-LIP 表现出更高的包封效率(>70%)和更慢的释放速率(10 小时时约为 50%),与 MTX-SPN 相比。在原代骨髓来源的巨噬细胞(BMDM)中,MTX-LIP 通过诱导 ABCA1 的 2 倍过表达(调节 oxLDL 外排),比游离 MTX 更有效地调节 oxLDL 的细胞间转运,而对 CD36 和 SRA-1(调节 oxLDL 内流)的影响则较小。此外,在 BMDM 中,MTX-LIP 表现出比游离 MTX 更强的抗炎活性,使 IL-1β 的表达降低 3 倍,IL-6 的表达降低 2 倍,TNF-α 的表达也适度降低。在 28 天高脂肪饮食喂养的 apoE 小鼠中,与游离 MTX 相比,MTX-LIP 将平均斑块面积降低了 2 倍,血液中 RANTES 的含量降低了一半。这些结果表明,将抗炎性 DSPE-MTX 缀合物的纳米增强递送至血管斑块,可以通过在动脉粥样硬化发生时阻止单核细胞的成熟和募集,有效调节疾病进展。