Suppr超能文献

高浓度的泛癸利酮(氧化型 CoQ)通过药物脂质共轭纳米分散体(BPM31510)递送,可差异化地影响恶性神经胶质瘤与非肿瘤细胞的氧化还原状态和生长。

High levels of ubidecarenone (oxidized CoQ) delivered using a drug-lipid conjugate nanodispersion (BPM31510) differentially affect redox status and growth in malignant glioma versus non-tumor cells.

机构信息

Department of Neurology and Clinical Neurosciences, Stanford University, Palo Alto, CA, 94305, USA.

Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.

出版信息

Sci Rep. 2020 Aug 17;10(1):13899. doi: 10.1038/s41598-020-70969-0.

Abstract

Metabolic reprogramming in cancer cells, vs. non-cancer cells, elevates levels of reactive oxygen species (ROS) leading to higher oxidative stress. The elevated ROS levels suggest a vulnerability to excess prooxidant loads leading to selective cell death, a therapeutically exploitable difference. Co-enzyme Q (CoQ) an endogenous mitochondrial resident molecule, plays an important role in mitochondrial redox homeostasis, membrane integrity, and energy production. BPM31510 is a lipid-drug conjugate nanodispersion specifically formulated for delivery of supraphysiological concentrations of ubidecarenone (oxidized CoQ) to the cell and mitochondria, in both in vitro and in vivo model systems. In this study, we sought to investigate the therapeutic potential of ubidecarenone in the highly treatment-refractory glioblastoma. Rodent (C6) and human (U251) glioma cell lines, and non-tumor human astrocytes (HA) and rodent NIH3T3 fibroblast cell lines were utilized for experiments. Tumor cell lines exhibited a marked increase in sensitivity to ubidecarenone vs. non-tumor cell lines. Further, elevated mitochondrial superoxide production was noted in tumor cells vs. non-tumor cells hours before any changes in proliferation or the cell cycle could be detected. In vitro co-culture experiments show ubidecarenone differentially affecting tumor cells vs. non-tumor cells, resulting in an equilibrated culture. In vivo activity in a highly aggressive orthotopic C6 glioma model demonstrated a greater than 25% long-term survival rate. Based on these findings we conclude that high levels of ubidecarenone delivered using BPM31510 provide an effective therapeutic modality targeting cancer-specific modulation of redox mechanisms for anti-cancer effects.

摘要

癌细胞与非癌细胞的代谢重编程会提高活性氧(ROS)水平,导致氧化应激增加。ROS 水平升高表明对过量促氧化剂负荷的易感性增加,导致选择性细胞死亡,这是一种可治疗的差异。辅酶 Q(CoQ)是一种内源性的线粒体驻留分子,在线粒体氧化还原稳态、膜完整性和能量产生中发挥重要作用。BPM31510 是一种脂质药物偶联纳米分散体,专门设计用于向细胞和线粒体输送超生理浓度的泛癸利酮(氧化型 CoQ),在体外和体内模型系统中均如此。在这项研究中,我们试图研究泛癸利酮在高度难治性脑胶质瘤中的治疗潜力。使用啮齿动物(C6)和人类(U251)神经胶质瘤细胞系以及非肿瘤性人类星形胶质细胞(HA)和啮齿动物 NIH3T3 成纤维细胞系进行实验。肿瘤细胞系对泛癸利酮的敏感性明显高于非肿瘤细胞系。此外,与非肿瘤细胞相比,肿瘤细胞中的线粒体超氧化物产生在增殖或细胞周期发生任何变化之前数小时就有所增加。体外共培养实验表明,泛癸利酮对肿瘤细胞和非肿瘤细胞的影响不同,导致培养物达到平衡。在高度侵袭性的原位 C6 神经胶质瘤模型中的体内活性研究表明,长期存活率超过 25%。基于这些发现,我们得出结论,使用 BPM31510 递送高浓度的泛癸利酮为靶向癌症提供了一种有效的治疗方式,针对癌症特异性调节氧化还原机制以产生抗癌作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b38/7431533/5ad043efb300/41598_2020_70969_Fig1_HTML.jpg

相似文献

2
Elevated levels of mitochondrial CoQ induce ROS-mediated apoptosis in pancreatic cancer.
Sci Rep. 2021 Mar 11;11(1):5749. doi: 10.1038/s41598-021-84852-z.
3
Resveratrol-loaded lipid-core nanocapsules treatment reduces in vitro and in vivo glioma growth.
J Biomed Nanotechnol. 2013 Mar;9(3):516-26. doi: 10.1166/jbn.2013.1547.
4
Coenzyme Q10 protects astrocytes from ROS-induced damage through inhibition of mitochondria-mediated cell death pathway.
Int J Biol Sci. 2015 Jan 1;11(1):59-66. doi: 10.7150/ijbs.10174. eCollection 2015.
5
Protective effects of coenzyme Q10 nanoparticles on dichlorvos-induced hepatotoxicity and mitochondrial/lysosomal injury.
Environ Toxicol. 2018 Feb;33(2):167-177. doi: 10.1002/tox.22505. Epub 2017 Nov 16.
6
Ubiquinone (coenzyme Q10) prevents renal mitochondrial dysfunction in an experimental model of type 2 diabetes.
Free Radic Biol Med. 2012 Feb 1;52(3):716-723. doi: 10.1016/j.freeradbiomed.2011.11.017. Epub 2011 Nov 21.
7
Effect of coenzyme Q10 intake on endogenous coenzyme Q content, mitochondrial electron transport chain, antioxidative defenses, and life span of mice.
Free Radic Biol Med. 2006 Feb 1;40(3):480-7. doi: 10.1016/j.freeradbiomed.2005.08.037. Epub 2005 Nov 9.
9
Strategies for oral delivery and mitochondrial targeting of CoQ10.
Drug Deliv. 2016 Jul;23(6):1868-81. doi: 10.3109/10717544.2014.993747. Epub 2014 Dec 29.
10
Formulation and characterization of nanostructured lipid carrier of ubiquinone (Coenzyme Q10).
J Biomed Nanotechnol. 2013 Mar;9(3):450-60. doi: 10.1166/jbn.2013.1560.

引用本文的文献

1
Autosomal Recessive Cerebellar Ataxias: Translating Genes to Therapies.
Ann Neurol. 2025 Sep;98(3):448-470. doi: 10.1002/ana.27271. Epub 2025 Jun 4.
4
Cancer pharmacoinformatics: Databases and analytical tools.
Funct Integr Genomics. 2024 Sep 19;24(5):166. doi: 10.1007/s10142-024-01445-5.
6
From signalling pathways to targeted therapies: unravelling glioblastoma's secrets and harnessing two decades of progress.
Signal Transduct Target Ther. 2023 Oct 20;8(1):400. doi: 10.1038/s41392-023-01637-8.
7
Advances of Artificial Intelligence in Anti-Cancer Drug Design: A Review of the Past Decade.
Pharmaceuticals (Basel). 2023 Feb 7;16(2):253. doi: 10.3390/ph16020253.
8
Antioxidants in brain tumors: current therapeutic significance and future prospects.
Mol Cancer. 2022 Oct 28;21(1):204. doi: 10.1186/s12943-022-01668-9.
9
Antitumor Immunotherapy of Sialic Acid and/or GM1 Modified Coenzyme Q10 Submicron Emulsion.
AAPS PharmSciTech. 2022 Oct 17;23(8):283. doi: 10.1208/s12249-022-02426-2.
10
Zirconia Nanoparticles Induce HeLa Cell Death Through Mitochondrial Apoptosis and Autophagy Pathways Mediated by ROS.
Front Chem. 2021 Mar 16;9:522708. doi: 10.3389/fchem.2021.522708. eCollection 2021.

本文引用的文献

1
Regulation of the oxidative balance with coenzyme Q10 sensitizes human glioblastoma cells to radiation and temozolomide.
Radiother Oncol. 2018 Aug;128(2):236-244. doi: 10.1016/j.radonc.2018.04.033. Epub 2018 May 18.
2
ROS-modulated therapeutic approaches in cancer treatment.
J Cancer Res Clin Oncol. 2017 Sep;143(9):1789-1809. doi: 10.1007/s00432-017-2464-9. Epub 2017 Jun 24.
3
A Wntless-SEC12 complex on the ER membrane regulates early Wnt secretory vesicle assembly and mature ligand export.
J Cell Sci. 2017 Jul 1;130(13):2159-2171. doi: 10.1242/jcs.200634. Epub 2017 May 17.
4
CoQ selective miscibility and penetration into lipid monolayers with lower lateral packing density.
Biochim Biophys Acta Biomembr. 2017 Jul;1859(7):1173-1179. doi: 10.1016/j.bbamem.2017.03.021. Epub 2017 Mar 30.
6
Reactive oxygen species and cancer paradox: To promote or to suppress?
Free Radic Biol Med. 2017 Mar;104:144-164. doi: 10.1016/j.freeradbiomed.2017.01.004. Epub 2017 Jan 11.
7
Assessment of the Tumor Redox Status in Head and Neck Cancer by 62Cu-ATSM PET.
PLoS One. 2016 May 17;11(5):e0155635. doi: 10.1371/journal.pone.0155635. eCollection 2016.
8
Understanding Ubiquinone.
Trends Cell Biol. 2016 May;26(5):367-378. doi: 10.1016/j.tcb.2015.12.007. Epub 2016 Jan 27.
9
NAC selectively inhibit cancer telomerase activity: A higher redox homeostasis threshold exists in cancer cells.
Redox Biol. 2016 Aug;8:91-7. doi: 10.1016/j.redox.2015.12.001. Epub 2015 Dec 8.
10
Biosynthesis of coenzyme Q in eukaryotes.
Biosci Biotechnol Biochem. 2016;80(1):23-33. doi: 10.1080/09168451.2015.1065172. Epub 2015 Jul 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验