Department of Neurology and Clinical Neurosciences, Stanford University, Palo Alto, CA, 94305, USA.
Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
Sci Rep. 2020 Aug 17;10(1):13899. doi: 10.1038/s41598-020-70969-0.
Metabolic reprogramming in cancer cells, vs. non-cancer cells, elevates levels of reactive oxygen species (ROS) leading to higher oxidative stress. The elevated ROS levels suggest a vulnerability to excess prooxidant loads leading to selective cell death, a therapeutically exploitable difference. Co-enzyme Q (CoQ) an endogenous mitochondrial resident molecule, plays an important role in mitochondrial redox homeostasis, membrane integrity, and energy production. BPM31510 is a lipid-drug conjugate nanodispersion specifically formulated for delivery of supraphysiological concentrations of ubidecarenone (oxidized CoQ) to the cell and mitochondria, in both in vitro and in vivo model systems. In this study, we sought to investigate the therapeutic potential of ubidecarenone in the highly treatment-refractory glioblastoma. Rodent (C6) and human (U251) glioma cell lines, and non-tumor human astrocytes (HA) and rodent NIH3T3 fibroblast cell lines were utilized for experiments. Tumor cell lines exhibited a marked increase in sensitivity to ubidecarenone vs. non-tumor cell lines. Further, elevated mitochondrial superoxide production was noted in tumor cells vs. non-tumor cells hours before any changes in proliferation or the cell cycle could be detected. In vitro co-culture experiments show ubidecarenone differentially affecting tumor cells vs. non-tumor cells, resulting in an equilibrated culture. In vivo activity in a highly aggressive orthotopic C6 glioma model demonstrated a greater than 25% long-term survival rate. Based on these findings we conclude that high levels of ubidecarenone delivered using BPM31510 provide an effective therapeutic modality targeting cancer-specific modulation of redox mechanisms for anti-cancer effects.
癌细胞与非癌细胞的代谢重编程会提高活性氧(ROS)水平,导致氧化应激增加。ROS 水平升高表明对过量促氧化剂负荷的易感性增加,导致选择性细胞死亡,这是一种可治疗的差异。辅酶 Q(CoQ)是一种内源性的线粒体驻留分子,在线粒体氧化还原稳态、膜完整性和能量产生中发挥重要作用。BPM31510 是一种脂质药物偶联纳米分散体,专门设计用于向细胞和线粒体输送超生理浓度的泛癸利酮(氧化型 CoQ),在体外和体内模型系统中均如此。在这项研究中,我们试图研究泛癸利酮在高度难治性脑胶质瘤中的治疗潜力。使用啮齿动物(C6)和人类(U251)神经胶质瘤细胞系以及非肿瘤性人类星形胶质细胞(HA)和啮齿动物 NIH3T3 成纤维细胞系进行实验。肿瘤细胞系对泛癸利酮的敏感性明显高于非肿瘤细胞系。此外,与非肿瘤细胞相比,肿瘤细胞中的线粒体超氧化物产生在增殖或细胞周期发生任何变化之前数小时就有所增加。体外共培养实验表明,泛癸利酮对肿瘤细胞和非肿瘤细胞的影响不同,导致培养物达到平衡。在高度侵袭性的原位 C6 神经胶质瘤模型中的体内活性研究表明,长期存活率超过 25%。基于这些发现,我们得出结论,使用 BPM31510 递送高浓度的泛癸利酮为靶向癌症提供了一种有效的治疗方式,针对癌症特异性调节氧化还原机制以产生抗癌作用。