Lu Ke, Li Bomin, Zhan Xiaowen, Xia Fan, Dahunsi Olusola J, Gao Siyuan, Reed David M, Sprenkle Vincent L, Li Guosheng, Cheng Yingwen
Department of Chemistry and Biochemistry, Northern Illinois University, DeKalb, Illinois 60115. United States.
Battery Materials and Systems Group, Energy and Environment Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354 United States.
Nano Lett. 2020 Sep 9;20(9):6837-6844. doi: 10.1021/acs.nanolett.0c02871. Epub 2020 Aug 27.
The developments of all-solid-state sodium batteries are severely constrained by poor Na-ion transport across incompatible solid-solid interfaces. We demonstrate here a triple NaMoS-carbon-BASE nanojunction interface strategy to address this challenge using the β″-AlO solid electrolyte (BASE). Such an interface was constructed by adhering ternary Na electrodes containing 3 wt % MoS and 3 wt % carbon on BASE and reducing contact angles of molten Na to ∼45°. The ternary Na electrodes exhibited twice improved elasticity for flexible deformation and intimate solid contact, whereas NaMoS and carbon synergistically provide durable ionic/electronic diffusion paths, which effectively resist premature interface failure due to loss of contact and improved Na stripping utilization to over 90%. Na metal hosted via triple junctions exhibited much smaller charge-transfer resistance and 200 h of stable cycling. The novel interface architecture enabled 1100 mAh/g cycling of all-solid-state Na-S batteries when using advanced sulfur cathodes with Na-ion conductive PEO-NaFSI binder and NaMoS redox catalytic mediator.
全固态钠电池的发展受到钠离子在不相容的固-固界面间传输性能不佳的严重制约。在此,我们展示了一种三重NaMoS-碳-BASE纳米结界面策略,以使用β″-AlO固体电解质(BASE)应对这一挑战。这种界面是通过将含有3 wt% MoS和3 wt%碳的三元钠电极附着在BASE上,并将熔融钠的接触角减小至约45°而构建的。三元钠电极在柔性变形方面表现出两倍的弹性提升以及紧密的固体接触,而NaMoS和碳协同提供持久的离子/电子扩散路径,有效抵抗因接触丧失导致的界面过早失效,并将钠剥离利用率提高到90%以上。通过三重结承载的钠金属表现出小得多的电荷转移电阻和200小时的稳定循环。当使用具有钠离子传导性PEO-NaFSI粘合剂和NaMoS氧化还原催化介质的先进硫阴极时,这种新型界面结构实现了全固态钠硫电池1100 mAh/g的循环性能。